
Ontology-Driven

Conceptual

Modeling

Giancarlo Guizzardi

Computer Science Department

Federal University of

Espírito Santo (UFES),

Brazil

IAOA Summer School

Trento, Italy

Day 2

Model
Domain

Abstraction
interpreted as

represented by

Modeling

Language

Domain

Conceptualization
interpreted as

represented by

used to

compose
instance of

used to

compose

Picture by Daniel Moody

Admissible state of affairs

according to a conceptualization C

{x Person(x), x Father(x)} (MM1)

Admissible state of affairs

according to a conceptualization C

State of affairs represented by the valid models

of metamodel MM1 of language L1

{x Person(x), x Father(x)} (MM1)

{x Person(x), x Father(x), x Father(x) Man(x), x

Person(x) Man(x) Woman(x), x Man(x)

Woman(x),…} (MM2)

Admissible state of affairs

according to a conceptualization C

State of affairs represented by the valid models

of metamodel MM1 of language L1

State of affairs represented by the valid models

of metamodel MM2 of language L2

{x Person(x), x Father(x)} (MM1)

{x Person(x), x Father(x), x Father(x) Man(x), x

Person(x) Man(x) Woman(x), x Man(x)

Woman(x),…} (MM2)

{x Person(x), x Father(x), x Father(x) Man(x), x

Person(x) Man(x) Woman(x), x Man(x)

Woman(x), x Person(x) □Person(x), x

LivingPerson(x) LivingPerson(x)…} (MM3)

Admissible state of affairs

according to a conceptualization C

State of affairs represented by the valid models

of metamodel MM1 of language L1

State of affairs represented by the valid models

of metamodel MM2 of language L2

State of affairs represented by the valid models

of metamodel MM3 of language L3

Admissible state of affairs

according to a conceptualization C

State of affairs represented by the valid models

of metamodel MM1 of language L1

State of affairs represented by the valid models

of metamodel MM2 of language L2

State of affairs represented by the valid models

of metamodel MM3 of language L3

Ontology of the domain

according to the

conceptualization C

Conceptual

Modeling

Language

Foundational

Ontology
interpreted as

represented by

Formal Ontology

• To uncover and analyze the general categories and
principles that describe reality is the very business of
philosophical Formal Ontology

• Formal Ontology (Husserl): a discipline that deals with
formal ontological structures (e.g. theory of parts, theory of
wholes, types and instantiation, identity, dependence, unity)
which apply to all material domains in reality.

OntoUML

Cognitive

Foundational

Ontology (UFO) interpreted as

represented by

A WHIRLWIND INTRODUCTION TO
THE UML 2.0 CLASS FRAGMENT

Classes and Attributes

• A class describes the common features (e.g., intrinsic and
relational properties) shared by a (possible multitude of)
entities which are then said to be the instances of that class

• Instances of a class must contain values for each attribute
that is defined for that class, in accordance with the
characteristics of the attribute, for example its type and
multiplicity.

• Attributes represent (more or less intrinsic) properties of
shared by members of a class

age:AgeValues[1]

height:HeightValues[1]

ssn:SSNValues[0..1]

Person

Classes and Attributes

• A class describes the common features (e.g., intrinsic and
relational properties) shared by a (possible multitude of)
entities which are then said to be the instances of that class

• Instances of a class must contain values for each attribute
that is defined for that class, in accordance with the
characteristics of the attribute, for example its type and
multiplicity.

• Attributes represent (more or less intrinsic) properties of
shared by members of a class

age:AgeValues[1]

height:HeightValues[1]

ssn:SSNValues[0..1]

Person

attribute

 name

attribute

 type
attribute

 multiplicity

Specialization

• Classes can be related to each other via specialization
relations forming a taxonomic structure

• All properties of a class are inherited through a
specialization chain

• A class can be a specialization of multiple classes

• The specialization relation is a anti-symmetric and transitive
relation, i.e.,

– If A specializes B then B cannot specialize A

– If A specializes B and B specializes C

– then A specializes C

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man

Specialization

• Classes can be related to each other via specialization
relations forming a taxonomic structure

• All properties of a class are inherited through a
specialization chain

• A class can be a specialization of multiple classes

• The specialization relation is a anti-symmetric and transitive
relation, i.e.,

– If A specializes B then B cannot specialize A

– If A specializes B and B specializes C

– then A specializes C

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man

supertype

subtype

Generalization Set

• Classes sharing a common direct supertype can be group in
what is called a generalization set

• There are two meta-attributes that can be used ascribe a
stronger semantics to a generalization set, namely, the
complete and disjoint meta-attributes

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man Woman

Specialization (Extensional Perspective)

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man

PERSON

Man

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man Woman

PERSON

Man
Woman

Complete

• If a generalization set is complete then the subclasses
exhaust the instances of the common direct superclass.

• In other words, in this case, there is no instance of the
superclass which is not an instance of one of the subclasses
participating in the generalization

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man Woman

{complete}

Man

Woman

Man and

Woman

PERSON

• If a generalization set is disjoint if all the subclasses
participating in the generalization are mutually exclusive

• In other words, the intersection between these any of these
subclasses pairwise is necessarily empty

Disjoint

neither Man

nor Woman
age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man Woman

{disjoint}

PERSON

Man

Woman

Disjoint and Complete

• If a generalization set is disjoint and complete then the
subclasses participating in this generalization set form a
partition.

• In other words, every instance of the common superclass is
an instance of one and only one of the subclasses

• In this case, the common superclass is an abstract class

age:AgeValues

height:HeightValues

ssn:SSNValues

Person

Man Woman

{disjoint, complete}

Man

Woman

PERSON

Associations

• An association declares that there can be links between
instances of the associated types. A link is a tuple with one
value for each end of the association, where each value is
an instance of the type of the end.

Person Property

1..* *

ownership

Associations
• One specify multiplicity constraints for each end of the

association

• The possibilities for cardinality constraints are:

Person Property

1..* *

ownership

Min Max UML notation

0 1 0..1

0 n (n> 1 indefinido) *

1 1 1

1 n (n> 1 indefinido) 1..*

min

max

Associations

• When one or more ends of the association are ordered,
links carry ordering information in addition to their end
values.

• To each association end, one can specify a rolename
definying the “role played by objects of that type in the
association”

Person
date:Date

Sympton
patient

1 1..*

{ordered}

exhibits4

Associations

• When one or more ends of the association are ordered,
links carry ordering information in addition to their end
values.

• To each association end, one can specify a rolename
definying the “role played by objects of that type in the
association”

Person
date:Date

Sympton
patient

1 1..*

{ordered}

exhibits4

rolename reading directionality

tagged valued representing

association end’s ordering

meta-attribute

Associations

• One can define type-reflexive associations, i.e., associations
in which both association ends are connected to the same
type

Person

parent *

offspring *

parenthood

Datatypes

• A Datatype represents the set of possible values that an
attribute can take.

• If attributes are seen as functions (mapping the extension of
a class to a datatype) than they are the range of that
function

• Datatypes have no instances in the real sense, they are
simply sets of values. They have members which are
abstract individuals, i.e., they are not explicitly created or
destroyed but are simply assumed to exist

age:AgeValues

Person «datatype»

AgeValues
Person

* 1

Datatypes

• There are simple and structured datatype. The “attributes”
of a structured datatype are named datatype fields

• The members of a datatype with n fields are n-uples. For
instance, the members of the color datatype below are
triples <h,s,b> of hue, saturation and brightness values

hue:Hue

saturation:Saturation

brightness:Brightness

«datatype»Color

Subsetting

Subsetting

*Not necessarily defending the modeling choices in the following slides

Association Specialization

Association Specialization

Association Redefinition

Association Redefinition

Modal Logics

• For this presentation, I will use the simplest system of
quantified alethic model logics (QS5);

• The model operators are □ (necessity) and (possibility)

• The accessability relation is considered to be universal (all
worlds are equally accessible);

– □A iff in every possible world w, A holds

– A iff there is a possible world w in which A holds

CATEGORIES OF OBJECT TYPES

General Terms and Common Nouns

• (i) exaclty five mice were in the kitchen last night

• (ii) the mouse which has eaten the cheese, has been
in turn eaten by the cat

General Terms and Common Nouns

• (i) exactly five X ...

• (ii) the Y which is Z...

General Terms and Common Nouns

• (i) exaclty five reds were in the kitchen last night

• (ii) the red which has ..., has been in turn ...

General Terms and Common Nouns

• Both reference and quantification require that the
thing (or things) which are refered to or which form
the domain of quantification are determinate
individuals, i.e. their conditions for individuation and
numerical identity must be determinate

Sortal and Characterizing Types

• Whilst the characterizing types supply only a principle
of application for the individuals they collect, sortal
types supply both a principle of application and a
principle of identity

CATEGORIES OF OBJECT TYPES

The Logical Level

• x Apple(x) Red(x)

The Epistemological Level

Apple

color = red

Red

sort = apple

The Ontological Level

Apple

color = red

Red

sort = apple

sortal universal characterizing

Universal

(mixin)

Foundations

• (1) We can only make identity and identification
statements with the support of a Sortal, i.e., the identity of
an individual can only be traced in connection with a Sortal
type, which provides a principle of individuation and
identity to the particulars it collects

 Every Object in a conceptual model (CM) of the domain
must be an instance of a class representing a sortal type

Foundations

• Moreover, since Non-Sortals cannot supply a principle of
identity for its instances, we have that, all Non-Sortal Types
in the model must be represented as Abstract Classes

Unique principle of Identity

X

Y

Y

X

Y

Unique principle of Identity

Y

Foundations

• (2) An individual cannot obey incompatible principles of
identity

Distinctions Among Categories of
Object Types

Object Type

Sortal Type Non-Sortal Type

Type

{Person, Apple, Student} {Insurable Item, Red}

Rigidity (R+)

• A type T is rigid if for every instance x of T, x is
necessarily (in the modal sense) an instance of T. In
other words, if x instantiates T in a given world w, then
x must instantiate T in every possible world w’:

R+(T) =def □(x T(x) □(T(x)))

R+(Person) =def □(x Person(x) □(Person(x)))

e.g.,

Anti-Rigidity (R~)

• A types T is anti-rigid if for every instance x of T, x is
possibly (in the modal sense) not an instance of T.
In other words, if x instantiates T in a given world
w, then there is a possible world w’ in which x does
not instantiate T:

R~(T) =def □(x T(x) (T(x)))

R~(Student) =def □(x Student) (Student(x)))

e.g.,

ObjectType

Sortal Type Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

Distinctions Among Categories
of Object Types

{Person, Organization}

{Insurable Item}

{Student, Teenager,

FootballPlayer}

A principle of identity cannot be supplied by

either of these two anti-rigid types,

since it should be used to identify individuals

in every possible situations!

Foundations

• (3) If an individual falls under two sortals in the course of
its history there must be exactly one ultimate rigid sortal
of which both sortals are specializations and from which
they inherit a principle of identity

P P’

S

…

Restriction Principle

P P’

…

(4) Instances of P and P’ must
have obey a principle of
identity (by 1)

(5) The principles obeyed by the
instances of P and P’ must
be the same (by 2)

(6) The common principle of
identity cannot be supplied
by P neither by P’

S

Uniqueness Principle

 (7) G and S cannot have incompatible
principles of identity (by 2).
Therefore, either:

 - G supplies the same principle as S
and therefore G is the ultimate Sortal

 - G is does not supply any principle
of identity (non-sortal)

P P’

…

G

…

S

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

Distinctions Among Categories
of Object Types

{Person, Organization}

{Insurable Item}

{Student, Teenager,

FootballPlayer}

{Man, Woman}

Foundations

• Since the unique principle of identity supplied by a Kind is
inherited by its subclasses, we have that:

• A Non-sortal type cannot appear in a conceptual model as a
subtype of a sortal

 Person

InsuredItem HeavyEntity

Foundations

• Since the unique principle of identity supplied by a Kind is
inherited by its subclasses, we have that:

• A Non-sortal type cannot appear in a conceptual model as a
subtype of a sortal

 Person

InsuredItem HeavyEntity

Foundations

• Since the unique principle of identity supplied by a Kind is
inherited by its subclasses, we have that:

• A Non-sortal type cannot appear in a conceptual model as a
subtype of a sortal

 Person

InsuredPerson HeavyPerson

HeavyEntityInsuredItem

Foundations

• Since the unique principle of identity supplied by a Kind is
inherited by its subclasses, we have that:

• A Non-sortal type cannot appear in a conceptual model as a
subtype of a sortal

 Person

InsuredPerson HeavyPerson

HeavyEntityInsuredItem I1

I1 I1

Foundations

• Since the unique principle of identity supplied by a Kind is
inherited by its subclasses, we have that:

• An Object in a conceptual model of the domain cannot
instantiate more than one ultimate Kind

«kind»

SocialBeing

«kind»

Group

Organization

TheBeatles

instance of

«kind»

SocialBeing

«kind»

Group

Organization

TheBeatles

instance of

I1 I2

I1, I2

I1, I2

«kind»

SocialBeing

«kind»

Group

Organization

TheBeatles

instance of

«kind»

SocialBeing

StaffOrganization

{John,Paul,George,Ringo}TheBeatles

instance of instance of

«constitution»

«kind»

Group

Foundations

• It is not the case that we cannot have multiple supertyping.
Only that we a type cannot have multiple kinds as
supertypes!

Foundations
• It is important to emphasize the supertyping is a modal

relation as well, i.e., if A is supertype of B then A is
necessarily a supertype of B

 A

B

Ac

B

Fixed Configuration Supertype(A,B) =def □(x B(x) A(x))

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

A Kind cannot be a supertype of another Kind

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

A subKind cannot be a supertype of a kind

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

A subKind type MUST have as a supertype

a (unique) Kind

Subkind Partitions
• It is typical that subkinds are defined in structures called

Subkind Partitions

• These are not always partitions in the strong sense, i.e.,
they defined as disjoint but rarely complete generalization
sets

«kind»Person

«subkind»Man «subkind»Woman

{disjoint,complete}

Subkind Partitions

«kind»Person

«subkind»Man «subkind»Woman

{disjoint,complete}

MalePerson

Female

Person

PERSON

These partitions are the same

In every possible world!

Subkinds

• However, subkinds also appear outside generalization sets
as specializations of kinds

«kind»Organization

«subkind»

EntertainmentOrganization

Subkinds

«kind»Organization

«subkind»

EntertainmentOrganization

«subkind»

NewsOrganization

«subkind»

News&EntertainmentOrganization

This only makes sense if there are genuine (intrinsic or relational)

properties to be defined for the intersection type

Subkind

• Remember that property overriding is always a bad idea and
it is always caused by a conceptual modeling mistake

declaredProfit:Currency

«subkind»

NonProfitOrganization

declaredProfit:Currency

«kind»

Organization

Subkind

• Remember that property overriding is always a bad idea and
it is always caused by a conceptual modeling mistake

declaredProfit:Currency

«subkind»

ForProfitOrganization

«kind»

Organization

«subkind»

NonProfitOrganization

{disjoint,complete}

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

An Anti-Rigid type MUST have as a supertype

a (unique) Kind

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

A Kind cannot be a supertype of a Non-Sortal Type

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

A Kind cannot be a supertype of a Non-Sortal Type

in fact, since all sortals will inherit a principle of

Identity from a Kind

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind

A Sortal Type cannot be a supertype of a Non-Sortal Type

gguizzardi@inf.ufes.br

