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Origins of Description Logics

Description Logics stem from early days knowledge representation
formalisms (late ’70s, early ’80s):

I Semantic Networks: graph-based formalism, used to represent
the meaning of sentences.

I Frame Systems: frames used to represent prototypical
situations, antecedents of object-oriented formalisms.

Problems: no clear semantics, reasoning not well understood.
Description Logics (a.k.a. Concept Languages, Terminological
Languages) developed starting in the mid ’80s, with the aim of
providing semantics and inference techniques to knowledge
representation system
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What are Description Logics today?
In the modern view, description logics are a family of logics that
allow to speak about a domain composed of a set of generic
(pointwise) objects, organized in classes, and related one another
via various binary relations.
Abstractly, description logics allows to predicate about labeled
directed graphs

I vertexes represents real world objects

I vertexes’s labels represents qualities of objects

I edges represents relations between (pairs of) objects

I vertexes’ labels represents the types of relations between
objects.

Every piece of world that can be abstractly represented in terms of
a labeled directed graph is a good candidate for being formalized
by a DL.
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What are Description Logics about?

Exercise
Represent Metro lines in Milan in a labelled directed graphLuciano Serafini FBK-IRST, Trento, Italy
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What are Description Logics about?

Exercise
Represent some aspects of Facebook as a labelled directed graphLuciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

What are Description Logics about?

Exercise
Represent some aspects of human anatomy as a labelled directed
graph

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

What are Description Logics about?

Exercise
Represent some aspects of document classification as a labelled
directed graph
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Ingredients of a Description Logic
A DL is characterized by:

1. A description language: how to form concepts and roles

Human uMale u ∃hasChild.> u ∀hasChild.(Doctor t Lawyer)

2. A mechanism to specify knowledge about concepts and roles (i.e., a
TBox)

T =


Father ≡ Human uMale u ∃hasChild.>
HappyFather v Father u ∀hasChild.(Doctor t Lawyer)
hasFather v hasParent


3. A mechanism to specify properties of objects (i.e., an ABox)

A = {HappyFather(john), hasChild(john,mary)}

4. A set of inference services that allow to infer new properties on concepts,
roles and objects, which are logical consequences of those explicitly
asserted in the T-box and in the A-box

(T ,A) |=
{

HappyFather v ∃hasChild .(Doctor t Lawyer)
Doctor t Lawyer(mary)

}
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Architecture of a Description Logic system
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Many description logics
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The description logics ALC: Syntax

Alphabet

The alphabet Σ of ALC is composed of:
ΣC : Concept names corresponding to node labels
ΣR : Role names corresponding to arc labels
ΣI : Individual names nodes identifiers
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Grammar

Concept C := A|¬C |C u C |∃R.C A ∈ ΣC , R ∈ ΣR

Definition A
.

= C A ∈ ΣC

Subsumption C v C
Assertion C (a)|R(a, b) a, b ∈ ΣI , R ∈ ΣR

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

The description logics ALC: Syntax

Abbreviations

> A u ¬A for some A ∈ ΣC

⊥ ¬>
C t D ¬(¬C u ¬D)
∀R.C ¬∃R.(¬C )
C ≡ D {C v D,D v C}

Exercise
Define Σ for speaking about the metro in Milan, and give examples
of Concepts, Definitions, Subsumptions, and Assertions
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The description logics ALC: Syntax

Solution
Concept Names (ΣC ):

Station the set of metro stations
RedLineStation the set of metro stations on the red line
ExchangeStation the set of metro stations in which it is

possible to exchange line

Role Names (ΣR):

Next the relation between one station and its
next stations

Individual Names (ΣI ):

Centrale the station called ”Centrale” . . .
Gioia . . .
...
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The description logics ALC: Syntax

Solution (Cont’d)
Concepts

RedLineStation u GreenLineStation the set of stations which
are on both red and green line

ExchangeStation u RedLineStation the set of exchange stations
of the red line

Station u ∃Next.RedLineStation the set of stations which
has a next station on the red line

Station u ∀Next.⊥ The set of End stations

Definition
RGExchangeStation

.
= RedLineStation u GreenLineStation

RYExchangeStation
.

= RedLineStation u YellowLineStation
GYExchangeStation

.
= GreenLineStation u YellowLineStation

ExchangeStation
.
= RGExchangeStation t RYExchangeStation t GYExchangeStation
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The description logics ALC: Syntax

Solution (Cont’d)
Subsumptions

RedLineStation v Station A red line station is a station
> v ∀Next.Station everything next to something is a station
∃Next.> v Station everything that has something next

must be a station

Subsumptions
GreenLineStation(Gioia) ”Gioia” is a station of the green line
RGExchangeStation(Loreto) ”Loreto” is an exchange station between

the green and the red line
Next(Loreto,Lima) ”Lima” is a next stop of ”Loreto”
¬Next(Loreto,Duomo) ”Duomo” is not next to ”Loreto”
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The description logics ALC: Semantics

Definition
A DL interpretation I is pair 〈∆I , ·I〉 where:

I ∆I is a non empty set called interpretation domain
I ·I is an interpretation function of the alphabet Σ such that

I AI ⊆ ∆I , every concept name is mapped into a subset of the
interpretation domain

I RI ⊆ ∆I ×∆I , every role name is mapped into a binary
relation on the interpretation domain

I oI ∈ ∆I every individual is mapped into an element of the
interpretation domain.
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The description logics ALC: Semantics

Interpretation of Complex concepts

(¬C )I = ∆I \ CI

(C u D)I = CI ∩ DI

(∃R.C )I = {d ∈ ∆I | exists d ′, 〈d , d ′〉 ∈ RI and d ′ ∈ CI}

Exercise
Provide the definition of the interpretations of the abbreviations:

(>)I = . . .

(⊥)I = . . .

(C t D)I = . . .

(∀R.C )I = . . .
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The description logics ALC: Semantics

Satisfaction relation |=

I |= A
.

= C iff AI = CI

I |= C v D iff CI ⊆ DI

I |= C (a) iff aI ∈ CI

I |= R(a, b) iff 〈aI , bI〉 ∈ RI

Satisfiability of a concept

A concept C is satisfiable if there is an interpretation I, such that

CI 6= ∅
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ALC knowledge base

Definition (Knowledge Base)

A knowledge base K is a pair (T ,A), wehre

I T , called the Terminological box (T-box), is a set of concept
definition and subsumptions

I A, called the Assertional box (A-box), is a set of assertions

Logical Consequence |=
A subsumption/assertion φ is a logical consequence of T , T |= φ,
if φ is satisfied by all interpretations that satisfies T ,

Satisfiability of a concept w.r.t, T
A concept C is satisfiable w.r.t., T if there is an interpretation that
satisfies T and such that

CI 6= ∅
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ALC and Modal Logics

Remark
There is a strict relation between ALC and multi modal logics

ALC ←→ Multi Modal Logics

I = 〈∆I , ·I〉 ←→ M = 〈W ,R1, . . . ,Rn, ν〉
object o ←→ world w

domain ∆I ←→ set of possible worlds W
concept name A ←→ propositional variable A

concept interpretation AI ←→ evaluation ν(A)
role name R ←→ modality �i

role interpretation RI ←→ accessibility relation Ri

∃R . . . ←→ ♦i . . .
¬C ←→ ¬C

C u D ←→ C ∧ D
I |= C (a) ←→ M,wa |= C
I |= C v D ←→ M |= C → DLuciano Serafini FBK-IRST, Trento, Italy
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ALC and Modal Logics

ALC and Multi Modal Logics are equivalent

The logic ALC in the language Σ = ΣC ∪ ΣR (i.e., with no
individuals), is equivalent to the multi-modal logic K defined on
the set of propositions ΣC and the set of modalities ♦R with
R ∈ ΣR .

Theorem (From ALC to multi modal K)

Let ·∗ be a transformation that replace u with ∧, and ∃R with ♦R ,

|=ALC C v D ⇒ |=K C ∗ → D∗

Theorem (From multi modal K to ALC)

Let ·+ be a transformation that replace ∧ with u, and ♦R with ∃R,

|=K C ⇒ |=ALC > v C+
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Axiomatization of ALC (via Modal Logic)

Axioms for ALC
I > v φ[p1, . . . , pn/C1, . . . ,Cn]

where φ is a propositional valid formula on the propositional
variables p1, . . . , pn, C1, . . . ,Cn are ALC concept expressions
for, and φ[p1, . . . , pn/C1, . . . ,Cn], denotes the simultaneous
substitution of p1, . . . , pn with C1, . . . ,Cn, and of ∧ with u.

I > v ¬∀R.(¬C t B) t ¬∀R.C t ∀R.D
(Translation of �R(C → D)→ (�RC → �RD) K axiom)

I
> v C C v D

> v D
MP (translation of

C C → D

D
MP)

I
> v C

> v ∀R.C
Nec (translation of

C

�RC
Nec)
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ALC and First Order Logic

Remark
There is also a strong relation between ALC and function free first
order logics with unary and binary predicates

ALC ←→ First order logic

I = 〈∆I , ·I〉
concept name A ←→ unary predicate A(x)

role name R ←→ binary predicate R(x , y)
∃R.C ←→ ∃y(R(x , y) ∧ C (y))
¬C ←→ ¬C (x)

C u D ←→ C (x) ∧ D(x)
I |= C (a)

I |= C v D ←→ I |= ∀x(C (x)→ D(x))
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ALC and First Order Logics

Exercise
Define a transformation ·∗ from ALC concepts to first order
formulas such that the following proposition is true

|=ALC > v C ⇒ |=FOL C ∗

Solution

ST x(A) = A(x)

ST x(A u B) = ST x(A) ∧ ST x(B)

ST x(¬A) = ¬ST x(A)

ST x(∃R.A) = ∃y(R(x , y) ∧ ST y (A))

Exercise
Show that ST x(∀R.C ) = ∀y(R(x , y)→ ST y (C )).
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From First Order Logic to ALC

Exercise
Is it possible to define a transformation ·+ from function free first
order formulas on unary and binary predicates such that the
following is true?

|=FOL φ ⇒ |=ALC > v φ+

I if yes specify the transformation

I if not provide a formal proof

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

ALC Basic Inference Problems

Concept subsumption

|= C v D CI ⊆ DI in all interpretations I?

Concept Subsumption w.r.t. T-Box T
|= C vT D CI ⊆ DI in all interpretations I that satisfies T ?

Concept consistency

Is C consistent? there exists an interpretation I such that CI 6= ∅?

Consistency w.r.t a Tbox T
Is C consistent w.r.t. T ? Is there a model I of T with CI 6= ∅?
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ALC Basic Inference Problems

Concept subsumption

|= C v D =⇒ C u ¬D is not Consistent

Concept Subsumption w.r.t. T-Box T
|= C vT D =⇒ C u ¬D is not Consistent w.r.t. T
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ALC Basic Inference Problems

Concept subsumption problem can be reduced into Concept
consistency as follows:

Consistency of an A-Box A
Is A consistent i.e., is there a model I of A?

Consistency of a T-Box T
Is T consistent i.e., is there a model I of T ?

Consistency of a knowledge base K
Is K = (T ,A) consistent i.e., is there a model I of T and A?
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ALC Complex Inference Tasks

Concept hierarchy

The subsumption hierarchy of T , is a partial order on the set of
primitive concepts defined as follows:

{A ≺ B|A,B ∈ ΣC and A vT B}

Individual classification
For all individual o ∈ ΣI determine all the primitive concepts
A ∈ ΣC , such that T |= A(o).
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Negation Normal Form

Definition
A concept C is in negation normal form (NNF) if the ¬ operator is
applied only to atomic concepts

Lemma
Every concept C can be reduced in an equivalent concept in NNF.

proof

A concept C can be reduced in NNF by the following rewriting
rules that push inside the ¬ operator:

¬(C u D) ≡ ¬C t ¬D
¬(C t D) ≡ ¬C u ¬D
¬(¬C ) ≡ C
¬∀R.C ≡ ∃R.¬C
¬∃R.C ≡ ∀R.¬C
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Checking satisfiability of a concept in ALC

Tableaux
Let C0 be an ALC-concept in NNF. In order to test satisfiability of
C0, the algorithm starts with A0 := {C0(x0)}, and applies the
following rules:

Rule Condition −→ Effect

→u C1 u C2(x) ∈ A −→ A := A ∪ {C1(x),C2(x)}
→t C1 t C2(x) ∈ A −→ A := A ∪ {C1(x)} or A ∪ {C2(x)}
→∃ ∃R.C(x) ∈ A −→ A := A ∪ {R(x , y),C(y)}
→∀ ∀R.C(x),R(x , y) ∈ A −→ A := A ∪ {C(y)}

Every rule is applicable only if it has an effect on A, i.e., if it adds
some new assertion; otherwise it’s not applicable.
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Checking satisfiability of a concept in ALC

Definition
An ABox A
I is complete iff none of the transformation rules applies to it.

I has a clash iff {C (x),¬C (x)} ⊆ A
I is closed if it contains a clash

I is open if it is not closed
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Checking satisfiability of a concept in ALC

Lemma

I There cannot be an infinite sequence of rule applications

{C0(x0)} → A1 → A2 → . . .

I If A′ is obtained by applying a deterministic rule to A, then
A is consistent iff A′ is consistent

I If A′ and A′′ can be obtained by applying a non-deterministic
rule to A, then
A is consistent iff either A′ or A′′ are consistent

I Any closed ABox A is inconsistent.

I Any complete and open ABox A is consistent.
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Canonical model

Satisfiability of complete and open A-box

To show item 5 of previous lemma, we describe a method for
generating an interpretation IA starting from a complete and
closed A-box A. This model is called Canonical interpretation

Canonical interpretation IA

1. ∆IA = {x |either C (x), r(x , y), or r(y , x) ∈ A}
2. AIA = {x |A(x) ∈ A}
3. RIA = {(x , y)|R(x , y) ∈ A}.

Theorem
It is decidable whether or not an ALC-concept is satisfiable
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Complexity of reasoning in ALC
Exercise
Consider the concept Cn inductively defined as follows;

C1 = ∃R.A t ∃R.¬A

Cn+1 = ∃R.A t ∃R.¬A u ∀R.Cn

Check the form of the canonical interpretation of the A-box
generated starting form {Cn(x0)}.

Solution
Given the input description Cn the satisfiability algorithm generates
a complete and open ABox whose canonical interpretation is a
binary tree of depth n, and thus consists of 2n+1 − 1 individuals.

So in principle the complexity of checking sat in ALC is
exponential in space
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Complexity of reasoning in ALC

Tree model property implies that each single branch of the A-box
can be elaborated separately → NPSPACE

The fact that NPSPACE = PSPACE allows us to show that

Theorem
Satisfiability of ALC-concept descriptions is PSpace-complete
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Exercises: Satisfiability in ALC

Exercise
Check the satisfiability of the following concepts:

1. ¬(∀R.A t ∃R.(¬A u ¬B))

2. ∃R.(∀S .C ) u ∀R.(∃S .¬C )

3. (∃S .C u ∃S .D) u ∀S .(¬C t ¬D)

4. ∃S .(C u D) u (∀S .¬C t ∃S .¬D)

5. C u ∃R.A u ∃R.B u ¬∃R.(A u B)

Check if the following subsumption is valid

¬∀R.A u ∀R((∀R.B) t A) v ∀R.¬(∃R.A) u ∃R.(∃R.B)
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Consistency of ALC A-boxes

Consistency of ALC-ABoxe

Let A0 be an ALC-ABox in NNF. To test A0 for consistency, we
simply apply the rules given above to A0.

Theorem
Consistency of ALC ABoxes is PSPACE-complete.
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Exercise
Which of the following statements are true? Explain your answer.

1. ∀R.(A u B) v ∀R.A u ∀R.B

2. ∀R.A u ∀R.B v ∀R.(A u B)

3. ∀R.A t ∀R.B v ∀R.(A t B)

4. ∀R.(A t B) v ∀R.A t ∀R.B
RI = {(x , y), (x , z)}, AI = {y}, BI = {z}

5. ∃R.(A u B) v ∃R.A u ∃R.B

6. ∃R.(A t B) v ∃R.A t ∃R.B

7. ∃R.A t ∃R.B v ∃R.(A t B)

8. ∃R.A u ∃R.B v ∃R.(A u B)
RI = {(x , y), (x , z)}, AI = {y}, BI = {z}

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

Exercise
Which of the following statements are true? Explain your answer.

1. ∀R.(A u B) v ∀R.A u ∀R.B

2. ∀R.A u ∀R.B v ∀R.(A u B)

3. ∀R.A t ∀R.B v ∀R.(A t B)

4. ∀R.(A t B) v ∀R.A t ∀R.B
RI = {(x , y), (x , z)}, AI = {y}, BI = {z}

5. ∃R.(A u B) v ∃R.A u ∃R.B

6. ∃R.(A t B) v ∃R.A t ∃R.B

7. ∃R.A t ∃R.B v ∃R.(A t B)

8. ∃R.A u ∃R.B v ∃R.(A u B)
RI = {(x , y), (x , z)}, AI = {y}, BI = {z}
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Reasoning in ALC with T-box

Subsumption w.r.t. TBoxes A subsumption C v D follows from
a TBox T , in symbols T |= C v D, if for every
interpretation I, if I |= T then I |= C v D

Concept satisfiability w.r.t. TBoxes A concept C is satisfiable
w.r.t. a TBox T if there exists an interpretation
I |= T and such that CI 6= ∅.

TBox satisfiability A TBox T is satisfiable if, there is a model of
T .

We have the following reductions to concept satisfiability w.r.t.
T-Boxes:

I T |= C v D if and only if C u ¬D is not consistent w.r.t. T .

I T is satisfiable if > is consistent w.r.t. T .

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

ALC concept satisfiability w.r.t. Acyclic T-box

Definition (Acyclic T-box)

A TBox is acyclic if it is a set of concept definitions that neither
contains multiple definitions nor cyclic definitions.

Multiple definitions are of the form A
.

= C and A
.

= D for
distinct concept descriptions C and D

cyclic definitions are of the form

A1
.

= C1[A2], A2
.

= C2[A3], . . . , An
.

= Cn[A1]

where C [A] means that the atomic concept A occurs
in the complex concept description C .
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ALC concept satisfiability w.r.t. Acyclic T-box

Naive reduction to ALC satisfiability

Satisfiability w.r.t. acyclic T-box can be reduced to ALC
satisfiability without T-Boxes by unfolding the definitions

Unfolding: repeatedly replacing defined names by their defining
concepts until no more defined names occur.

Exponential blow up

Unfolding may lead to an exponential blow-up,

A0
.

= ∀R.A1 u ∀S .A1

A1
.

= ∀R.A2 u ∀S .A2

...

An−1
.

= ∀R.An u ∀S .An
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ALC concept satisfiability w.r.t. Acyclic T-box

Smarter strategy - Unfolding on demand

Rule Condition −→ Effect

→u C1 u C2(x) ∈ A −→ A := A ∪ {C1(x),C2(x)}
→t C1 t C2(x) ∈ A −→ A := A ∪ {C1(x)} or A ∪ {C2(x)}
→∃ ∃R.C(x) ∈ A −→ A := A ∪ {R(x , y),C(y)}
→∀ ∀R.C(x),R(x , y) ∈ A −→ A := A ∪ {C(y)}
→T A(x) ∈ A and A

.
= C ∈ T −→ A := A ∪ NNF (C)(x)

Theorem
Satisfiability w.r.t. acyclic terminologies is PSpace-complete in
ALC.
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ALC concept satisfiability w.r.t. T-box

Intuition

1. C v D is equivalent to > v ¬C t D

2. > v ¬C tD is an axiom of T then for every A-box generated
by the tableaux and for ever occurrence of x in A, we have to
add also the fact ¬C t D(x)

3. so it’s just a matter of extending the set of rules as follows:

Rule Condition −→ Effect

→u C1 u C2(x) ∈ A −→ A := A ∪ {C1(x),C2(x)}
→t C1 t C2(x) ∈ A −→ A := A ∪ {C1(x)} or A ∪ {C2(x)}
→∃ ∃R.C(x) ∈ A −→ A := A ∪ {R(x , y),C(y)}
→∀ ∀R.C(x),R(x , y) ∈ A −→ A := A ∪ {C(y)}
→T x occurs in A −→ A := A ∪ NNF (¬C t D)(x)
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ALC concept satisfiability w.r.t. T-box

Exercise
Check if C is satisfiable w.r.t. the T-box {C v ∃R.C}

Solution

{C (x0)} →T {C (x0),¬C t ∃R.C (x0)}
→t {C (x0),∃R.C (x0)}
→∃ {C (x0),R(x0, x1),C (x1)}
→T {C (x0),R(x0, x1),C (x1),C t ∃R.C (x1)}
→t {C (x0),R(x0, x1),C (x1)∃R.C (x1)}
→∃ {C (x0),R(x0, x1),C (x1),R(x1, x2),C (x2)}
→T . . .

Termination
termination is no longaer guarantedLuciano Serafini FBK-IRST, Trento, Italy
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ALC concept satisfiability w.r.t. T-box

Blocking

I y is an ancestor of y in an A-box A, if A contains

R0(y , x1),R1(x1, x2), . . . ,Rn(xn, x)

I L(x) = {C |C (x) ∈ A}
I x is directly blocked in A if it has an ancestor y with
L(x) ⊆ L(y)

I if y is the closest such node to x , we say that x is blocked by y

I A node is blocked if it is directly blocked or one of its
ancestors is blocked

Restriction
Restrict the application of all rules to nodes which are not blocked
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ALC concept satisfiability w.r.t. T-box

Exercise
Check if C is satisfiable w.r.t. the T-box {C v ∃R.C}

Solution

{C (x0)} →T {C (x0),¬C t ∃R.C (x0)}
→t {C (x0),∃R.C (x0)}
→∃ {C (x0),R(x0, x1),C (x1)}

x1 is blocked by x0 since

L(x1) = {C} ⊆ L(x0) = {C , ∃R.C}

Termination
With blocking strategy the algorithm is guaranteed to terminateLuciano Serafini FBK-IRST, Trento, Italy
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ALC concept satisfiability w.r.t. T-box

Cyclic interpretations

The interpretation IA generated from an A-box A obtained by the tableaux
algorithm with blocking strategy is defined as follows:

I ∆IA = {x | C(x) ∈ A and x is not blocked}
I AIA = {x ∈ ∆IA | A(x) ∈ A}
I RIA = {(x , y) ∈ ∆IA ×∆IA | R(x , y) ∈ A} ∪
{(x ′, x) | x ′ ∈ ∆IA , R(x ′, x) ∈ A, and x is blocked by y}

Complexity

The algorithm is no longer in PSPACE since it may generate role paths of
exponential length before blocking occurs.

Theorem
Satisfiability of an ALC concept w.r.t. general T-box is ExpTime-complete
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Finite model property

Theorem
A consistent T-box in ALC has a finite model

proof

The model constructed via tableaux is finite. Completeness of the
tableaux procedure implies that if a T-box is consistent, then the
algorithm will find a model, which is indeed finite
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Finite model property

Remark
The tableaux method reported here does not generate neither the smallest, nor
the more intuitive model. For instance, to check the consistency of the
following T-box

{> v ∃R.A u ∃S .B}
the algorithm returns the following model, But there are also the following,
maybe more appropriate, and smaller models

x0>

x1A x2 B

R S

x0>

x1A,B

R S

x0A

x1B

R

S

x0A,B R, S
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Extensions of ALC
Number restrictions ALCN (≤ n)R [(≥ n)R]

Persons v (≤ 1)is merried with

Number restriction allows to impose that a relation is
a function

Qualified Number restrictions ALCQ (≤ n)R.C [(≥ n)R.C ]

football team v (≥ 1)has player.Golly u
(≤ 2)has player.Golly u
(≥ 2)has player.Defensor u
(≥ 4)has player.Defensor u
. . .
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Extensions of ALC
Inverse roles ALCI R−. make it possible to use the inverse of a

role. For example, we can specify has Parent as the
inverse of has Child,

has Parent ≡ has Child−

meaning that
hasParentI = {(y , x) | (x , y) ∈ has ChildI I}

Transitive roles tr(R) used to state that a given relation is
transitive

Tr(hasAncestor)

meaning that (x , y), (y , z) ∈ hasAncestorI →
(x , z) ∈ hasAncestorI

Subsumptions between roles R v S used to state that a
relation is contained in another relation.

hasMother v hasParent
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Modeling with Inverse role

Exercise
Try to model the following facts in ALCI. (notice that not all the
statements are modellable in ALCI)

1. Lonely people do not have friends and are not friends of
anybody

2. An intermediate stop is a stop which has a predecessor stop
and a successor stop

3. one of the next stop of the next stop is the current stop
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Modeling with Inverse role
Solution

1. Lonely people do not have friends and are not friends of anybody

lonely person ≡ person u ¬∃has friend−.> u ¬∃has friend .>

2. An intermediate stop is a stop which has a predecessor stop and a
successor stop

Intermediate stop ≡ Stop u ∃next.Stop u ∃next−.Stop

3. one of the next stop of the next stop is the current stop

Not modellable
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Encoding number restriction with inverse and
functional roles

Exercise
Suppose that the concept C and T-box T contains number
restrictions only on a single role R. Define set of axioms TR such
and a transformation τ from concepts of ALCN and ALCIF
such that the following fact holds: C is satisfiable w.r.t. T in
ALCN iff τ(C ) is satisfiable w.r.t. τ(T ) ∪ TR in ALCIF
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Encoding number restriction with inverse and
functional roles

Intuitive solution
Replace the role R with R1, . . . ,Rn used for counting the number
of R’s successors.

1

2

3

4

R

R

R

1 |= (≤ 3)R
1 |= ¬(≥ 4)R

1

2

3

4

R1

R2

R3

1 |= ∃R1.>
1 |= ∃R2.>
1 |= ∃R3.>
1 |= ¬∃R4.>

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

Encoding number restriction with inverse and
functional roles

Intuitive solution
Replace the role R with R1, . . . ,Rn used for counting the number
of R’s successors.

1

2

3

4

R

R

R

1 |= (≤ 3)R
1 |= ¬(≥ 4)R

1

2

3

4

R1

R2

R3

1 |= ∃R1.>
1 |= ∃R2.>
1 |= ∃R3.>
1 |= ¬∃R4.>

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

Encoding number restriction with inverse and
functional roles

Intuitive solution
Replace the role R with R1, . . . ,Rn used for counting the number
of R’s successors.

1

2

3

4

R

R

R

1 |= (≤ 3)R
1 |= ¬(≥ 4)R

1

2

3

4

R1

R2

R3

1 |= ∃R1.>
1 |= ∃R2.>
1 |= ∃R3.>
1 |= ¬∃R4.>

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

Encoding number restriction with inverse and
functional roles

Solution (Formal)

1. n is the maximum number occurring in a number restriction of C

2. for every role R introduce R1, . . . ,Rn+1

3. for every role Ri , TR contains the axioms:

3.1 ∃Ri+1.> v ∃Ri .> for 1 ≤ i ≤ n
3.2 > v (≤ 1)Ri for 1 ≤ i ≤ n (NB: Rn+1 is not functional)
3.3 > v ∀Ri .(∀R−j .⊥) for 1 ≤ i 6= j ≤ n

4. τ((≥ m)R) = ∃Rm.τ(A)

5. τ((≤ m)R) = ∀Rm+1.¬τ(A)

6. τ(∃R.A) = ∃R1.τ(A) t · · · t ∃Rn+1.τ(A)

7. τ(∀R.A) = ∀R1.τ(A) u · · · u ∀Rn+1.τ(A)
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Encoding number restriction with inverse and
functional roles

Solution (Formal (cont’d))

We have to prove that if C is satisfiable, then τ(C ) is satisfiable in
TR .

1. If C is satisfiable in ALCN , then it has a tree-shaped model I
2. Extend I into J with the interpretation of R1, . . . ,Rn+1 as

follows. For all d ∈ ∆I , let RI(d) = {d1, . . . , dm, . . . } is the
set of R-successors of d in I, then

I if |D| < n, then add (d , di ) to RJi for 1 ≤ i ≤ |D|
I if |D| ≥ n, then add (d , di ) to RIi for 1 ≤ i ≤ n and also add

(d , dj) to RIn+1 for j ≥ n + 1

3. Prove that J is a model of TR
4. Prove that J is a model of τ(C )
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(d , dj) to RIn+1 for j ≥ n + 1

3. Prove that J is a model of TR
4. Prove that J is a model of τ(C )
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functional roles

Solution (Formal (cont’d))
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TR .
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Encoding number restriction with inverse and
functional roles

Solution (Formal (cont’d))

Finally we have to prove that if τ(C ) is satisfiable in TR , then C is
satisfiable.

1. Let J be a tree-shaped model of TR that satisfies C .

2. Let I be obtained by extending J with the interpretation of
R as follows RI = RI1 ∪ · · · ∪ RIn+1

3. prove by induction on C, that I is a model of C .
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Role hierarchy H
Definition
Role Hierarchy A role hierarchy H is a finite set of role
subsumptions, i.e., expressions of the form

R v S

for role symbols R and S We say that R is a subrole of S

Definition
I |= R v S if and only if RI ⊆ SI .

Exercise
Explain why the construct R v S cannot be axiomatized by the
subsumptions

∃R.> v ∃S .>
∀S .> v ∀R.>
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Transitive roles S
Semantic condition
I |= tr(R) if RI is a transitive relation.

Exercise
Explain why transitive roles cannot be axiomatized by the axiom

∃R.(∃R.A) v ∃R.A

Solution

1

2 3 A

4 A

R R

R

this model satisfies the
axiom ∃R.(∃R.A) v ∃R.A
but R is not transitive
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T-box internalization

Satisfiability w.r.t. T-box vs. concept satisfiability

Until now we have distinguished between the following two
problems:

I Satisfiability of a concept C and

I Satisfiability of a concept C w.r.t. a T-box T .

Clearly the first problem is a special case of the second, but with
expressive languages that support role hierarchy and transitive role
satisfiability w.r.t., T-box can be reduced to satisfiability.

This is like in propositional or first order logic where the problem of
checking Γ |= φ (validity under a finite set of axioms Γ) reduces to
the problem of checking the validity of a single formula. I.e.,∧

Γ→ φ.
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T-box internalization for logics stronger than SH

Lemma
Representing the whole t-box in a single concept Let C a concept
and T = {A1 v B1, . . . ,An v Bn} be a finite set of GCI.

CT =
nl

i=1

¬Ai t Bi

Let U be a new transitive role, and let

RU = {R v U|for all role R appearing in C and T }

C is satisfiable w.r.t., T iff C uCT u∀U.CT is satisfiable w.r.t. RU
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Nominals (a.k.a. Objects) O
Explicit definition of concepts

In many cases it is convenient to define a set (concept) by
explicitly enumerating its members. E.g.,

WeekDay ≡
{

Monday ,Friday ,Saturday ,Sunday ,
Thursday ,Tuesday ,Wednesday

}

Nominals
A nominal is a concept with cardinality equal to 1, it represents a
singleton set. If o is an individual then, the expression:

{o}

is a concept, called Nominal. The expression {o1, . . . , on} for
n ≥ 0 denotes ⊥ if n = 0, and {o1} t · · · t {on} if n > 0.

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

Nominals (a.k.a. Objects) O

Semantics of Nominals
The interpretation of a nominal, i.e., ({o})I is the singleton set
{oI}. As a consequence:

{o1, . . . , on}I = {oI1 , . . . , oIn }
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Nominals (a.k.a. Objects) O

Exercise
Modeling with Nominals: Express, in term of subsumptions
between concepts with, the following statements, using Nominals,
and all the DL constructs you studied so far:
I There are exactly 195 Countries;

I either John or Mary is a spy but not both;

I Alice loves either Bob or Calvin;

I Everything is created by God;

I Everybody agree in driving on the left or on the right;

I ∃xA(x)→ ∀xB(x)
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Nominals (a.k.a. Objects) O
Solution

I There are exactly 195 Countries;

Country ≡ {Afghanistan,Albania, . . . ,Zimbabwe}
{Afghanistan} v ¬{Albania}, . . . , {Afghanistan} v ¬{Zimbabwe}
{Albania} v ¬{Algeria}, . . . , {Albania} v ¬{Zimbabwe}
. . .

I either John or Mary is a spy, but not both;

{John} v ¬{Mary}
{JohnOrMary} v {John,Mary}
{JohnOrMary} v Spy

I Alice loves either Bob or Calvin;

{Alece} v ∃Loves.{Bob,Calvin}
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Nominals (a.k.a. Objects) O
Solution (Cont’ed)

I Everything is created by God

> v ∃creates−.{god}

In this case god is called spy point, as every object of the
domain can be observed (and predicated) by “god” through
the relation “creates”. Spy point allows for full
universal/existential quantification.

I Everybody agree in driving on the left or on the right;

{god} v ∀creates(¬Person t LeftDriver) t
∀creates(¬Person t RightDriver)

I ∃xA(x)→ ∀xB(x)

{god} v ∃creates.A t ∀creates.B (1)Luciano Serafini FBK-IRST, Trento, Italy
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Boolean T-boxes
Definition (Boolean T-box)

A Boolean TBox is a propositional formula whose atomic components are
concept subsumptions. More formally:

I A v B is a boolean T-box, for every concepts A and B;

I if α and β are boolean T-boxes then ¬α, α ∧ β, α ∨ β and α→ β are
boolean T-boxes

Example

The Boolean T-box:

¬(Driver v Pilot) ∧ ((Driver v LeftDriver) ∨ (Driver v RightDriver))

states that not all the drivers are pilots and that either all drivers drive on the
left or all drivers drive on the right side of the road.

Exercise
Show that boolean t-boxes cannot be represented in SHIQ. (Suggestion: use
the fact that SHIQ is invariant under disjoint union of models)

Luciano Serafini FBK-IRST, Trento, Italy

Description Logics Primer



Introduction The DL ALC More expressive DL’s DL’s with nominals More constructs for Roles Conclusion

Boolean t-box, nominals and inverse

Theorem
In ALCOI a boolean T-box can be transformed in an equivalent
standard T-box

Proof.
Let φ a boolean T . w.l.o.g we can assume that φ is CNF (w.r.t, the boolean
operators) i.e., is a set of clauses C where each c ∈ C is of the form:

c =
n∨

i=1

(Ai v Bi ) ∨
m∨
j=1

¬(Cj v Dj)

Let r and o be a new role and a new object respectively, not appearing in φ,
Tφ as the T-Box that contains the subsumption > v ∃r−{o} (i.e. o is a spy
point) and the following subsumption for every clause c as above

{o} v
n⊔

i=1

(∀r .(¬Ai t Bi )) t
m⊔
j=1

(∃r .(Cj u ¬Dj)
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Reasoning with Nominals

Tree-model property

The tree model property has been advantageous for DL tableau
algorithms by allowing them to search for tree-like models

Example

The concept {a} u ∃r .{a} is satisfiable only by a model that
contains a cycle on a.

remark

The difficulty in extending the SHIQ algorithms to
SHOIQ is due to the interaction between nominals,
number restrictions, and inverse roles, which leads to the
almost complete loss of the tree model property, and
causes the complexity of the ontology consistency
problem to jump from ExpTime to NExpTime

[Horrocks and Sattler]
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Reasoning with Nominals

Example

Consider the T-box T that contains:

> v ∃r−{o} {o} v (≤ 20)R.A
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Completion Graph

Definition
Let R be a role hierarchy and D a SHOIQ-concept in NNF. A
completion graph for D with respect to R is a directed graph

G = 〈V ,E ,L, 6=〉

where:

L(v) ⊆ cl(D) ∪ NI ∪
{(≤ m)R.C ) | (≤ n)R.C ∈ cl(D) and m < n}

E (v ,w) ⊆ {R|R is a role of D}
6= ⊆ V × V
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Some terminology

Nominal Node
A nominal node (N-node) is a node x , such that L(x) contains a
nominal o

Blockable Node
A Blockable node is any node which is not a nominal node

Clas
A completion graph G contain a clash if

1. {A, 6= A} ⊂ L(x) for some A and x ; (ALC)

2. (≤ n)S .C ∈ L(x) and there are n + 1 S-neighbours y0, . . . , yn
of x with C ∈ L(yi ), and yi 6= yj for 0 ≤ i < j ≤ n (ALCQ)

3. o ∈ L(x) ∩ L(y), and x 6= y for some x , y and o nominal.
(SHIQ)
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Tableau rules for SHOIQ
→u: if 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and

2. {C1,C2} 6∈ L(x)
then L(x) := L(x) ∪ {C1,C2}

→t: if 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and
2. {C1,C2} ∩ L(x) = ∅

then L(x) := L(x) ∪ {C} for some C ∈ {C1;C2}

→∃: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no safe S-neighbour y with C ∈ L(y),

then create a new node y with L(x , y) = {S} and L(y) = {C}

→∀: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C 6∈ L(y)

then L(y) := L(y) ∪ {C}

→∀+ : if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R v∗ S, and
3. there is an R-neighbour y of x with ∀R.C 6∈ L(y)

then L(y) := L(y) ∪ {∀R.C}
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Tableau rules for SHOIQ (cont’d)

→?: if 1. (≤ n)S .C) ∈ L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with {C ,¬C} ∩ L(y) = ∅

then L(y) := L(y) ∪ {E} for some E ∈ {C ,¬C}

→≥: if 1. (≥ n.S .C) ∈ L(x), x is not blocked, and
2. there are not n safe S-neighbors y1, . . . , yn of x with

C ∈ L(yi ) and yi 6= yj for 1 ≤ i < j ≤ n
then create n new nodes y1, . . . yn with L(x , yi ) = {S},

L(yi ) = {C}, and yi 6= yj for 1 ≤ i < j ≤ n

→≤: if 1. (≤ n)S .C) ∈ L(z), z is not indirectly blocked, and
2. #SG (z,C) > n and there are two S-neighbours x , y of z

with C ∈ L(x) ∩ L(y), and not x 6= y
then 1. if x is a nominal node, then Merge(y , x)

2. else if y is a nominal node or an ancestor of x , then Merge(x , y)
3. else Merge(y ; x)
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Blocking strategy in SHOIQ
The blocking strategy is the same as in SHIQ, restricted to the
non-nominal nodes (i.e., blockable nodes).

Blocking in SHOIQ
A node x is directly blocked if it has ancestors x ′, y and y ′ such
that

1. x is a successor of x ′ and y is a successor of y ′,

2. y , x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x ′) = L(y ′), and

4. L(x ′, x) = L(y ′, y),

A node is blocked if either it is directly blocked or it is blockable
and its predecessor is directly blocked, in this case we say that x is
indirectly blocked.
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Merging Nodes

Intuition
Merge(y , x) is obtained by

I adding L(y) to L(x);

I redirecting all the edges leading to y to x

I redirecting all the edges leading from y to nominal nodes so
that they lead from x to the same nominal nodes;

I removing y (and blockable sub-trees below y)
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Tableau rules for SHOIQ (cont’d)
→o : if for some nominal o there are 2 nodes x , y with

o ∈ L(x) ∩ L(y) and not x 6= y
then Merge(x , y)

→o?: if 1. (≤ n)S .C ∈ L(x), x is a nominal node, and
there is a blockable S-neighbour y of x such that
{C} ∈ L(y) and x is a successor of y and

2. there is no m with 1 ≤ m ≤ n, (≤ m)S .C ∈ L(x)
and there are m nominal S-neighbours z1, . . . zm of
x with C ∈ L(zi ) and zi 6= zj for all 1 ≤ i < j ≤ m

then 1. guess m ≤ n and set L(x) := L(x) ∪ {(≤ m)S .C}
2. create m new nodes y1, . . . , ym with
L(x , yi ) := {S}, L(yi ) = {C , oi} for oi ∈ NI

new in G , and yi 6= yj for all 1 ≤ i < j ≤ m
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More espressivity for roles
Boolean combination of roles O Role expressions can be

boolean combination of roles ¬R, R t S , R u S . For
instance:

HasParent ≡ HasMother t HasFather ,
¬Likes, hasColleque u hasFriend

Role composition R Role expressions contains compositions of
roles R ◦ S . For instance

hasParent ◦ hasBrother v hasUncle

Role properties Direct statements about roles as Transitive(R),
Symmetric(R), Asymmetrichas(R), Reflexive(R),
Irreflexive(R), Functiona(R) and InvFunctional(R)

Transitive(hasAncestor) Symmetrichas(Spouse)
Asymmetrichas(Child) Reflexive(hasRelative)
Irreflexive(parentOf ) Functional(hasHusband)
InvFunctional(hasHusband)
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The description logics SROIQB
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Regular Role Inclusion Axioms (RIAs)

Undecidability

Role primitives cause undecidability when used without restrictions.
Regularity restrictions ensure decidability

RIA as Grammar
An R-box R that contains a role R can be seen as a grammar

R1 ◦ · · · ◦ Rn v R =⇒ R −→ R1 . . .Rn

LR(R) = {R1 . . .Rn | R
∗−→ R1, . . . ,Rn}

Recovering from undecidability

Tableaux algorithm for SROIQ is based on the corresponding
automata for LR(R). Decidability can be obtained by restricting to
Regular context free grammars.
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Regular R-box

Example (Regular language)

R ◦ S v R
S ◦ R v R

generates the language S∗RS∗ which is regular. The sufficient
condition is satisfied by the order S ≺ R.

Example (Non regular language)

S ◦ R ◦ S v R

is not regular as it generates the language SnRSn which is not a
regular context free language.
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Decidability in SROIQ
How to ensure that the set of RIAs is regular?
Checking if a CFG is regular is undecidable
We can define a set of sufficient condition for regularity

Regular RIA

R ◦ R v R
R− v R

S1 ◦ · · · ◦ Sn v R
R ◦ S1 ◦ · · · ◦ Sn v R
S1 ◦ · · · ◦ Sn ◦ R v R

if there is a partial order ≺ on roles such that
Si ≺ R for 1 ≤ i ≤ n, and
R ≺ S iff R ≺ S−
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Regular R-box

Exercise
Check if the following Ria is Regular:

isProperPartOf v isPartOf
isPartOf ◦ isPartOf v isPartOf

isPartOf ◦ isProperPartOf v isPartOf
isProperPartOf ◦ isPartOf v isPartOf

Then define LR(isPartOf ).

Exercise
Check if the following Ria is Regular:

R ◦ R v R
S v R

R ◦ S v S
S ◦ R v S

Then define LR(R) and LR(S) and check if they regular languages?
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Reasoning in SROIQ

I Satisfiability and subsumption of SROIQ-concepts w.r.t.
Tboxes, Aboxes, and Rboxes, are polynomially reducible to
(un)satisfiability of SROIQ-concepts w.r.t. Rboxes.

I W.l.o.g., we can assume that Rboxes do not contain role
assertions of the form Irr(R), Tra(R), or Sym(R), and that
the universal role is not used.

Exercise
Show how Irr(R), Tra(R), and Sym(R), can be expressed in RIA
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Reasoning in SROIQ

Universal role elimination
Consider U as any other role, (no special interpretation) and define
following concept:

CT ≡ ∀U.

 l

AvB∈T
¬A t B

 u l

o∈N
∃U.{o}

and extend the R-box with the following assertions: R v U,
Tra(U), Sym(U), and Ref (U).
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Tableaux for SROIQ
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I we have seen a set of DLs with increasing expressivity and
reasoning complexity. There are many more, which can be
obtained by different combinations of the presented primitives.
For an overview of all the properties of the various DLs you
can access to the interactive web site DL complexity navigator

http://www.cs.man.ac.uk/~ezolin/dl/

where you can define you preferred DL and check if somebody
have studied it (if you are lucky you can find a paper on your
preferred DL)

I We haven’t dedicated much time to reasoning. For your
reference, most (but not all) of the reasoning tools are based
on tableaux, (Pellet, Fact++, Racer, Hermit,. . . ). Some of
them like MSPASS. All the DL reasoners are listed at the page

http://www.cs.man.ac.uk/~sattler/reasoners.html
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