
IMPLEMENTING
BETTER ONTOLOGIES
WITH GUFO
A HANDS-ON TUTORIAL

Tiago Prince Sales, João Paulo A. Almeida,
Giancarlo Guizzardi

t.princesales@utwente.nl

EEMCS / Services and Cyber Security

mailto:t.princesales@utwente.nl

TEAM AND ACKNOWLEDGEMENTS

Tiago Prince Sales
University of Twente

The Netherlands

Giancarlo Guizzardi
University of Twente,

The Netherlands

João Paulo A. Almeida
Federal University of
Espírito Santo, Brazil

Claudenir M. Fonseca
University of Twente,

The Netherlands

… and all who contributed to UFO over the years!

• Target audience
• Researchers and practitioners interested in designing better OWL ontologies

• Requirements
• You know how to build ontologies in OWL using a tool like Protégé
• No previous knowledge of UFO or OntoUML is required

• Learning objectives
• Knowledge on how to use gUFO to create an ontology in OWL
• Knowledge on how to apply gUFO's patterns to solve recurrent modeling problems

TARGET AUDIENCE AND GOAL

• Part 1
• Introduction
• Getting started with gUFO

• Part 2
• Taxonomy of individuals and object properties
• Qualities and datatype

• Part 3
• Taxonomy of types
• Historical data
• Closing

AGENDA

INTRODUCTION01

• Reference ontology

• Is built as a conceptual model giving
precedence to real-world adequacy

• Designed for a class of problems

• UFO is a reference ontology

• Ontology Implementation

• Sacrifices real-world adequacy to obtain
computational properties

• Designed for a specific problem

• gUFO is our implementation of UFO in OWL
• ‘g’ stands for gentle

REFERENCE ONTOLOGY X ONTOLOGY IMPLEMENTATION

APPROACH

gUFO

Domain-independent

More specific
Common

Ontology of Value
and Risk

AlpineBits
DestinationData

Ontology

Your core
ontology here!

Your domain
ontology here!

APPROACH

Edsger W. Dijkstra (1972). “The Humble Programmer”, ACM Turing Award Lecture

“We shall do a much better programming job, provided that we approach
the task with a full appreciation of its tremendous difficulty, […] we
stick to modest and elegant programming languages, […] we respect the
intrinsic limitations of the human mind and approach the task as Very
Humble Programmers.”

TH
E HUMBLE

 ONTO
LO

GIST

• We need all the help we can get!

• Reuse of definitions and rules in foundational layer
• “a little semantics goes a long way” – James Handler
• “some more semantics goes further” – João Paulo A. Almeida

• Patterns all the way
• cope with recurrent conceptual challenges
• cope with recurrent implementation challenges
• improve implementation stability

• Automatic error detection
• beyond what can be achieve in the ontologically-neutral OWL

IMPLEMENTING BETTER ONTOLOGIES

OOPS!

Trophy

rdfs:subClassOf

Physical Objcet

rdfs:subClassOf

Concrete Objcet

Object

Award

rdfs:subClassOf

rdfs:subClassOf

Recognition

Thanking

rdfs:subClassOf

rdfs:subClassOf

Occurrence

rdfs:subClassOfBut these are disjoint classes!

OOPS AGAIN!

Trophy

rdfs:subClassOf

Activity

Award

Recognition

Thanking

rdfs:subClassOf

rdfs:subClassOf

Occurrence

rdfs:subClassOf

Thanking is both a subclass
and an instance of
occurrence!

rdf:type

rdfs:subClassOf

rdf:type

“series of actions which
results in a change of state”

• What is a foundational ontology?
• Captures our understanding of general (ubiquitous!) notions
• Objects, their aspects, their types, their parts, … events, situations…

FOUNDATIONAL ONTOLOGIES

• Why should I use a foundational ontology when creating my OWL ontologies?

• You get a “seed ontology” from which you can build your own ontology

• You reuse domain independent concepts

• You avoid conceptual mistakes

• You increase the “semantic depth” of your ontology, improving its interoperability

FOUNDATIONAL ONTOLOGIES

• Why should I use gUFO as my foundational ontology in OWL?

• You get to use foundational patterns to model:
• Roles
• Qualities
• Phases
• Relationships

• You can express that not all types are “the same”

• You get a sophisticated theory of relationships

• You get support for multi-level modeling

• You get patterns to handle change and historical data

FOUNDATIONAL ONTOLOGIES

• gUFO reflects UFO taxonomies of individuals and types (universals)

• We slightly adjust the terminology (when possible) to avoid philosophical jargon

GUFO OVERVIEW

REUSABLE CLASSES

gUFO

gUFO-based (domain) ontology

Person

Earthquake

Marriage

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

REUSABLE PROPERTIES

gUFO

gUFO-based (domain) ontology

Person

Tiago

Marriage

rdfs:subClassOf

gufo:mediates

rdfs:subClassOf

Camila

rdf:type
rdf:type

Tiago and
Camila’s
Marriage

rdf:type

gufo:mediates

More than a
taxonomy!

GETTING STARTED02

1. gUFO: https://purl.org/nemo/gufo
2. gUFO Documentation: https://purl.org/nemo/doc/gufo
3. gUFO YouTube Playlist: https://www.youtube.com/playlist?list=PL4-CtXCqPknOLd3KAr8Oygk0dyFIOajdM
4. gUFO Protégé Plugin (Prototype): https://github.com/nemo-ufes/ufo-protege-plugin
5. gUFO 101: https://github.com/unibz-core/gufo-tutorial-ontobras

RESOURCES

http://purl.org/nemo/gufo
https://purl.org/nemo/doc/gufo
https://www.youtube.com/playlist?list=PL4-CtXCqPknOLd3KAr8Oygk0dyFIOajdM
https://github.com/nemo-ufes/ufo-protege-plugin
https://github.com/unibz-core/gufo-tutorial-ontobras

1. Import gufo using https://purl.org/nemo/gufo

SETTING UP GUFO IN PROTÉGÉ

Import using HTTPS, not HTTP

https://purl.org/nemo/gufo

1. Import gufo using https://purl.org/nemo/gufo

2. Add the gufo prefix:

gufo: http://purl.org/nemo/gufo#

SETTING UP GUFO IN PROTÉGÉ

Now, use HTTP instead

https://purl.org/nemo/gufo
http://purl.org/nemo/gufo

1. Import gufo using https://purl.org/nemo/gufo

2. Add the gufo prefix:

gufo: http://purl.org/nemo/gufo#

3. If needed, show the imports closure of
your ontology

SETTING UP GUFO IN PROTÉGÉ

https://purl.org/nemo/gufo
http://purl.org/nemo/gufo

1. Navigate to https://github.com/nemo-ufes/ufo-protege-plugin

2. Download the latest release from the Release section

ufo-protege-plugin-0.0.9.jar

3. Copy the downloaded file to Protégé’s plugin folder
1. On macOS, right-click the Protégé app and select “Show Package Contents”
2. Navigate to “Contents > Java > plugins” and copy the downloaded file there
3. Restart Protégé

4. On Protégé top menu, go to “Window > Tabs > UFO Validation Tab”

SETTING UP THE GUFO PLUGIN

https://github.com/nemo-ufes/ufo-protege-plugin
https://github.com/nemo-ufes/ufo-protege-plugin/releases
https://github.com/nemo-ufes/ufo-protege-plugin/releases/download/v0.0.9/ufo-protege-plugin-0.0.9.jar

There are 4 ways in which you can reuse gUFO classes:

1. By instantiating classes in the taxonomy of individuals
2. By specializing classes in the taxonomy of individuals
3. By instantiating classes in the taxonomy of types
4. By specializing classes in the taxonomy of type

Users may combine these various approaches.

By default, we recommend employing scenarios 2 and 3 together.

REUSING GUFO CLASSES

1. By instantiating classes in the taxonomy of individuals

REUSING GUFO CLASSES (1)

:IKEA

gufo:Object

:1958 World
Cup Final

gufo:Event

rdf:type rdf:type

:Ibrahimović

rdf:type

:Tiago and
Camila’s Marriage

gufo:Relator

rdf:type

2. By specializing classes in the taxonomy of individuals

REUSING GUFO CLASSES (2)

:Company

gufo:Object

:FootballMatch

gufo:Event

rdfs:subClassOf rdfs:subClassOf

:Footballer

rdfs:subClassOf

:Marriage

gufo:Relator

rdfs:subClassOf

3. By instantiating classes in the taxonomy of types

REUSING GUFO CLASSES (3)

:Person

gufo:Kind

rdf:type

:Footballer

rdf:type

:Adult

gufo:Phase

rdf:type

gufo:Role

:Man

gufo:SubKind

rdf:type

2. By specializing classes in the taxonomy of individuals

AND

3. By instantiating classes in the taxonomy of types

REUSING GUFO CLASSES (2+3)

:Person

gufo:Kind
rdf:type

:Footballer rdf:type

gufo:Role

:Man

gufo:SubKind

rdf:type

gufo:Object

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

4. By specializing classes in the taxonomy of types

REUSING GUFO CLASSES (4)

:Species

gufo:Kind

rdfs:subClassOf

:AcademicRole

rdfs:subClassOf

gufo:Role

:Breed

gufo:SubKind

rdfs:subClassOf

:CanisFamiliaris

rdf:type

:GermanShepherd
rdf:type

rdfs:subClassOf

:Researcher :Professor

rdf:type rdf:type

There are 2 ways in which you can reuse gUFO properties:

1. By reusing gufo properties to make instance-level assertions
2. By reusing gufo properties to create type-level cardinality constraints
3. By specializing gufo properties

REUSING GUFO PROPERTIES

1. By reusing gufo properties to make instance-level assertions

REUSING GUFO PROPERTIES (1)

:Ibrahimović:IbrahimovićBrain
gufo:isComponentOf

:EuropeanUnion:Sweden
gufo:isMemberOf

Note that properties that imply existential dependency and part-whole relations are easier to
reuse, such as gufo:inheresIn and gufo:isComponentOf

:Ibrahimović

: IbrahimovićFootballSkill

gufo:inheresIn

2. By reusing gufo properties to create type-level cardinality constraints

REUSING GUFO PROPERTIES (2)

:Person:Brain

rdfs:subClassOfrdfs:subClassOf

gufo:Object gufo:FunctionalComplexgufo:isComponentOfrdfs:domain rdfs:range

rdfs:subClassOf

gufo:isComponentOf exactly 1 :Person

rdfs:subClassOf

3. By specializing gufo properties

REUSING GUFO PROPERTIES (2)

:Person:Brain :isBrainOf

gufo:Object gufo:FunctionalComplexgufo:isComponentOf

rdfs:subPropertyOf rdfs:subClassOfrdfs:subClassOf

rdfs:domain

rdfs:domain rdfs:range

rdfs:range

rdfs:subClassOf

1.By specializing gufo properties

:Person:Brain :isBrainOf

gufo:Object gufo:FunctionalComplexgufo:isComponentOf

rdfs:subPropertyOf rdfs:subClassOfrdfs:subClassOf

rdfs:domain

rdfs:domain rdfs:range

rdfs:range

rdfs:subClassOf

:Ibrahimović:IbrahimovićBrain
:isBrainOf

rdf:type rdf:type

THE TAXONOMY OF
INDIVIDUALS AND
OBJECT PROPERTIES03

TYPES AND INDIVIDUALS

• Type: an entity that may be instantiated by (or predicated over) other entities.
• Also known as “class”, “universal”, “concept”, “kind”, and “category”
• Person, Movie, Country

• Individual: An entity that (unlike a gufo:Type) cannot be instantiated.
• Also known as “instance”, “particular”, and “object”
• J.R.R. Tolkien, The Matrix, Brazil

• Every individual must instantiate at least one type in a given point in time.

https://nemo-ufes.github.io/gufo/

Tiago
Camila

Davi

Person
University

UNIBZ

UTwente

UNITN

Baby
City

Trento

Bolzano

Rome

TYPES

INDIVIDUALS

Tiago
Camila

Davi

Person

Baby
1ST-ORDER TYPES

INDIVIDUALS

gufo:Kind
2ND-ORDER TYPES

gufo:Phase

gufo:Object

Tiago
Camila

Davi

Person

Baby
1ST-ORDER TYPES

INDIVIDUALS

gufo:Kind
2ND-ORDER TYPES

gufo:Phase

gufo:Object

Defined in the taxonomy of types

Defined in the taxonomy of individuals

Defined in your dataset

• Concrete individual

• A gufo:Individual that exists in space-time.

• Concrete individuals comprise:
• Object-like entities: a car, a mountain, a

person, a marriage, a belief
• Events: a business meeting, a soccer match
• Situations: the situation in which a person

weighs 80 kilograms, the situation in which a
bank account is overdrawn

• Abstract individual

• A gufo:Individual that does not exist in space-time
in the same way as a gufo:ConcreteIndividual
does.

• A gufo:AbstractIndividual has no spatiotemporal
qualities in its own right. Hence, it does not make
sense to ask how much space it now occupies
(Gideon, 2018) and when it was created or
destroyed.

• Examples include the number ten, the null set,
and the proposition that 'Obama was the president
of the United States'.

CONCRETE VS ABSTRACT INDIVIDUALS

:Car

rdfs:subClassOf

gufo:Concrete
Individual

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

gufo:hasBeginPointInXSDDate
rdfs:domain rdfs:range

xsd:date

:Car

rdfs:subClassOf

gufo:Concrete
Individual

:Fiat5001

rdf:type

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

gufo:hasBeginPointInXSDDate
rdfs:domain rdfs:range

xsd:date

gufo:hasBeginPointInXSDDate
“2020-07-01”^^xsd:date

:Car

rdfs:subClassOf

gufo:Concrete
Individual

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

gufo:hasBeginPointInXSDDate
rdfs:domain rdfs:range

xsd:date

:hasManufacturingDate
rdfs:domain

rdfs:subPropertyOf

:Car

rdfs:subClassOf

gufo:Concrete
Individual

:Fiat5001

rdf:type

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

gufo:hasBeginPointInXSDDate
rdfs:domain rdfs:range

xsd:date

:hasManufacturingDate
“2020-07-01”^^xsd:date

:hasManufacturingDate
rdfs:domain

rdfs:subPropertyOf

• Endurant
• A gufo:ConcreteIndividual that endures in time and may change qualitatively while keeping its identity.
• Examples:
• Ordinary objects of everyday experience, such as a person, a house, and a car;
• Reified relationships, such as a marriage, a rental contract, and a person's love for another;
• Existentially-dependent aspects of objects, such as a car's weight, a person's language skills, and a house's

color.

• Event
• A gufo:ConcreteIndividual that 'occurs' or 'happens' in time. They may be instantaneous or long-running. Events

are those "things that happen to or are performed by" (Casati and Varzi, 2015) endurants.
• Examples:
• Actions and processes, such as a business meeting, a communicative act, a soccer match, a goal kick
• Natural occurrences, such as an earthquake, the fall of the meteor that caused the extinction of the

dinosaurs.

TYPES OF CONCRETE INDIVIDUALS

:Person

rdfs:subClassOf

gufo:Relator

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

:Marriage

rdfs:subClassOf

:Tiago :Camila:Tiago & Camila’s
Marriage

rdf:type

rdf:typerdf:type

gufo:mediates gufo:mediates

:Person

gufo:mediates gufo:Relator

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

:Marriage

rdfs:subClassOf

:Tiago :Camila:Tiago & Camila’s
Marriage

rdf:type

rdf:typerdf:type

:involvesSpoouse

rdfs:subClassOf
rdfs:range

rdfs:domain

:involvesSpoouse
rdfs:range rdfs:domain

:involvesSpoouse

rdfs:subPropertyOf

:Person

rdfs:subClassOf

gufo:ExtrinsicMode

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

:Love

rdfs:subClassOf

:Tiago :Camila:Tiago’s Love for
Camila

rdf:type

rdf:typerdf:type

gufo:inheresIn gufo:externallyDepends

• Relations between events and endurants:
• An endurant wasCreatedIn an event
• An endurant wasTerminedIn an event
• An object participatedIn an event
• An aspect was manifestedIn an event

• Relations between events and situations
• A situation contributedToTrigger an event
• An event broughtAbout a situation

EVENTS

:Person

rdfs:subClassOf

gufo:Event gufo:Endurant

gufo:Object

rdfs:subClassOf

:Concert

rdfs:subClassOf

:Freddy :Camila:Queen’s Live Aid
Concert

rdf:type

rdf:type

rdf:type

gufo:participatedIn

gufo:participatedIn

:Microphone

:Freddy’s
Mic

rdf:type

gufo:participatedIn

rdfs:subClassOf

:Person

rdfs:subClassOf

gufo:Relator

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

:Marriage

rdfs:subClassOf

:Tiago :Camila:Tiago & Camila’s
Marriage

rdf:type

rdf:type
rdf:type

gufo:mediates gufo:mediates

gufo:Event

:Wedding

rdfs:subClassOf

:Tiago & Camila’s
Wedding

rdf:type

gufo:wasCreatedIn

gufo:participatedIn

gufo:participatedIn

:Person

rdfs:subClassOf

gufo:Relator

gufo:Endurant

gufo:Object

rdfs:subClassOf

rdfs:subClassOf

:Marriage

rdfs:subClassOf

:Tiago :Camila:Tiago & Camila’s
Marriage

rdf:type

rdf:type
rdf:type

gufo:mediates gufo:mediates

gufo:Event

:Divorce

rdfs:subClassOf

:Tiago & Camila’s
Divorce

rdf:type

gufo:wasTerminatedIn

gufo:participatedIn

gufo:participatedIn

:FootballMatch

gufo:Event

:FootballWorlCup

rdfs:subClassOf

:Brasil vs
Serbia:2022 World Cup

rdf:typerdf:type

gufo:isEventProperPartOf

rdfs:subClassOf

QUALITIES AND
DATATYPES04

QUALITIES

• We distinguish between the color of an apple from the particular shade of red it has at some point in time.

• This allows us to:
• Express that the color of the apple changes
• Represent the value of the color in multiple measurement systems
• Represent the truth maker of comparative relations

Apple X
Color of
Apple X

inheres in

(0, 92, 100)

(255, 20, 20)

Apple X
Color of
Apple X

inheres in

(224, 100, 90)

(0, 60, 230)

There are 3 ways to represent qualities in gUFO:

1. By specializing the datatype property gufo:hasQualityValue
2. By specializing the object property gufo:hasReifiedQualityValue
3. By specializing the class gufo:Quality

a. that is projected in a 1-dimensional space
b. that is projected in a n-dimensional space

Choosing between these options depends mostly on your use case requirements!

REPRESENTING QUALITIES IN GUFO

1. By specializing the datatype property gufo:hasQualityValue

REPRESENTING QUALITIES (1)

:Apple :hasColor

gufo:hasQualityValue

rdfs:subPropertyOf

rdfs:domain

rdfs:domain

gufo:Concrete
Individual

rdfs:subClassOf

rdfs:range
xsd:string

:AppleX

rdf:type

:hasColor
“red”

2. By specializing the object property gufo:hasReifiedQualityValue

REPRESENTING QUALITIES (2)

:Apple :hasColor

gufo:hasReifiedQualityValue

rdfs:subPropertyOfrdfs:subClassOf

rdfs:domain

rdfs:domain

gufo:Concrete
Individual

rdfs:range :Color
Value

:AppleX

rdf:type

:hasColor

rdfs:range gufo:Quality
Value

rdfs:subClassOf

gufo:Abstract
Individual

rdfs:subClassOf

:Red

rdf:type

3a. By specializing the class gufo:Quality that is projected in a 1-dimensional space

REPRESENTING QUALITIES (3A)

:Apple

rdfs:subClassOf

gufo:Concrete
Individual

:AppleX

rdf:type

:isColorOf

gufo:Quality
Value

rdfs:subClassOf

:Red

rdf:type

:Color

gufo:Quality

rdfs:subClassOf

:ColorOf
AppleX

rdf:type

:hasColorValue
(sub gufo:hasReifiedQualityValue)

:Color
Value

:isColorOf
(sub gufo:inheresIn)

:hasColorValue
(sub gufo:hasReifiedQualityValue)

rdfs:domain rdfs:rangerdfs:domainrdfs:range

:Apple

rdfs:subClassOf

gufo:Concrete
Individual

:AppleX

rdf:type

:isColorOf

:Color

gufo:Quality

rdfs:subClassOf

:ColorOf
AppleX

rdf:type

:isColorOf
(sub gufo:inheresIn)

rdfs:domain rdfs:range

gufo:isColorOf exactly 1 :Apple

rdfs:subClassOf

We may want to impose cardinality constraints on colors:

3b. By specializing the class gufo:Quality that is projected in a n-dimensional space

REPRESENTING QUALITIES (3B)

:Apple

rdfs:subClassOf

gufo:Concrete
Individual

:AppleX

rdf:type

:isColorOf

gufo:Quality
Value

rdfs:subClassOf

:CV1

rdf:type

:Color

gufo:Quality

rdfs:subClassOf

:ColorOf
AppleX

rdf:type

:hasColorValueInRGB

:ColorValue
InRGB

:isColorOf
(sub gufo:inheresIn)

:hasColorValueInRGB
(sub gufo:hasReifiedQualityValue)

255

:red
:green

20
20

:blue

:red

gufo:hasValueComponent
rdfs:domain

rdfs:domain rdfs:range
xsd:int

:green

:blue

:Apple

rdfs:subClassOf

gufo:Concrete
Individual

:AppleX

rdf:type

:isColorOf

gufo:Quality
Value

rdfs:subClassOf

:rgb1

rdf:type

:Color

gufo:Quality

rdfs:subClassOf

:ColorOf
AppleX

rdf:type

:hasColorValueInRGB

:ColorValue
InRGB:isColorOf :hasColorValueInRGB

255

:red
:green

20
20

:blue

:hsv1

rdf:type

:ColorValue
InHSV

0

:hue
:saturation

92
100

:value

rdfs:subClassOf

:hasColorValueInHSV

gufo:Quality
Value

rdfs:subClassOf

:Color

gufo:Quality

rdfs:subClassOf

:ColorValue
InRGB

:ColorValue
InHSV

rdfs:subClassOf
gufo:hasAssociatedQualityValueType

gufo:hasAssociatedQualityValueType

We can also declared the dimensions in which a quality type can be projected into

THE TAXONOMY OF
TYPES05

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband Philanthropist

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband Philanthropist

In 1970

Person

Man

Father

Football player

Brazilian

Actor

Minister of sports

Adult

Husband

In 1994

Philanthropist

Person

Man

Brazilian

Actor

Minister of sports

Adult

In 2020

Husband

Father

Football player

Philanthropist

RIGIDITY

• A metaproperty regarding the instantiation dynamics between types and their instances
• Rigid types: Person, Man
• Anti-rigid types: Adult, Father, Husband, Football Player
• Semi-rigid types: Brazilian

• Originally proposed in the OntoClean methodology

102 Guarino, N., & Welty, C. A. (2004). An overview of OntoClean

• Essentially classify its instances

RIGID TYPES

103

Pelé is both a Person and a Man in every possible point in time in which he exists
(even counterfactual ones)

ANTI-RIGID TYPES

• Contingently classify its instances

104

Pelé was contingently a Child and an Adult. Now he is a Senior.

SEMI-RIGID TYPES

• Essentially classify some of its instances and contingently classify others

105

Pelé is a natural born Brazilian, so it is
essential for him to be so.

Meligeni became a Brazilian when he was a
child. Thus, being so is an accidental
property for him.

RIGIDITY IN GUFO
• Type

o Abstract Individual Type
o Concrete Individual Type

§ Event Type
§ Situation Type
§ Endurant Type

• Rigid Type
• Kind
• Category
• Subkind

• Non-Rigid Type
o Anti-Rigid Type

o Role
o RoleMixin
o Phase
o PhaseMixin

o Semi-Rigid Type
o Mixin

Person

Man

Living Being

Footballer

Infant

Child

rdf:type

Customer

Music Artist

• They allows us to:
• Properly characterize the various types in our domain
• Create consistent taxonomies

• gUFO leverages these distinctions to define rules to help us design better models!

WHY ARE THESE DISTINCTIONS USEFUL?

gufo:SubKind

A rigid type
can be specialized by
a rigid type

A rigid type
can be specialized by
an anti-rigid type

:Person gufo:Kind
rdf:type

:Man
rdf:type

rdfs:subClassOf

gufo:Role

:Person gufo:Kind
rdf:type

:Footballer
rdf:type

rdfs:subClassOf

gufo:Role

:Student gufo:Role
rdf:type

:PhDStudent
rdf:type

rdfs:subClassOf

gufo:Mixin

:Insurable
Item gufo:Mixin

rdf:type

:Insurable
House rdf:type

rdfs:subClassOf

An anti-rigid type
can be specialized by
an anti-rigid type

A semi-rigid type
can be specialized by
an semi-rigid type

gufo:Kind :Band
rdf:type

rdfs:subClassOf

gufo:Role

:Music Artist gufo:Mixin
rdf:type

:Musician
rdf:type

rdfs:subClassOf

A semi-rigid type can be specialized by an anti-rigid or a rigid type

gufo:Kind

:Customer gufo:RoleMixin
rdf:type

:Person
rdf:type

rdfs:subClassOf

gufo:Mixin

:ExpensiveItem gufo:RoleMixin
rdf:type

:InsurableItem
rdf:type

rdfs:subClassOf

An anti-rigid type
cannot be specialized by
a rigid type

An anti-rigid type
cannot be specialized by
a semi-rigid type

Are these the same statue?

?

What about now?

?

• A “function” that allows us to distinguish and count individuals

• It helps us to answer questions like:
• “Is that my dog?”
• “Is this the same actor I have seen in that other movie?”

• It defines how much an individual can change and remain the same

• Every individual adheres to an identity criteria!

IDENTITY CRITERIA

Guarino, N., & Welty, C. A. (2004). An overview of OntoClean

• Consider the following scenario:
• time duration: 1 hour, 2 hours…
• time interval: “1:00 – 2:00 next Tuesday”, “2:00 – 3:00 next Wednesday”

• Would making time interval a subclass of time duration be a good modeling decision?
• 2 durations are the same if they have the same length
• 2 intervals are the same if they occur at the same time

IDENTITY CRITERIA

• A metaproperty regarding the relation between types and identity criteria:

• Sortal type: all of its instances follow the same identity criteria
• Person, Man, Student, Adult, Marriage

• Non-sortal type: its instances follow different identity criteria
• Agent, Customer, Physical Object

• Ultimate sorta type: provides the identity criteria to its instances
• Person, Organization, Marriage

SORTALITY

SORTALITY IN GUFO

• Type
o Abstract Individual Type
o Concrete Individual Type

§ Event Type
§ Situation Type
§ Endurant Type

• Sortal
• Kind
• Subkind
• Role
• Phase

• NonSortal
• Category
o RoleMixin
o PhaseMixin
o Mixin

Person

Man

Living Being

Footballer

Infant

Child

rdf:type

Customer

Music Artist

gufo:Kind

:Place

rdf:type

rdfs:subClassOf

:LocalBusiness gufo:SubKind

rdf:type

:Organization

rdfs:subClassOf

A sortal type cannot specialize
multiple ultimate sortal types

gufo:Kind:Animal

rdf:typerdfs:subClassOf

rdf:type

:Dog

An ultimate sortal type
cannot specialize another

ultimate sortal type

:LocalBusiness gufo:SubKind

gufo:Category:Agent
rdf:type

An ultimate sortal type
cannot specialize another

ultimate sortal type

rdf:type
A sortal type
must specialize
an ultimate sortal type

These classes provide
identity criteria to their
instances

The instances of these
classes follow different

identity criteria

The instances of these classes follow the same identity
criterion, which is inherited from Person

:Individual

rdfs:subClassOf

:Agent

:Organization:Person
:Student

:Child :Adult :Elder

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

Rigid sortal types that supply an identity principle to its instances

• Rigid sortal types that supply an identity principle to its instances

• Also known as natural kinds in the philosophical literature

• The basic types of things that exist in our domain of interest

KINDS

gufo:Kind

:Person

rdf:type

:Tree :Company :Car

rdf:typerdf:type

• Rigid sortal types that (indirectspecialize ultimate
sortal types (e.g. kinds), from who they inherit the
identity criteria

• Subkinds specialize kinds or other subkinds

SUBKINDS
gufo:Kind

:Man

gufo:SubKind

rdf:type

:Person

rdfs:subClassOf

:SUV

:Car

rdfs:subClassOf

:Pine

:Tree

rdfs:subClassOf

rdf:type

rdf:type

rdf:type
rdf:type

rdf:type

• Subkinds are often defined in partitions

SUBKIND PARTITIONS
gufo:Kind

:Sedan

gufo:SubKind

rdfs:subClassOf

:SUV

:Car

rdfs:subClassOf

rdf:type rdf:type
rdf:type

rdf:type

:Hatchback

rdfs:subClassOf

• Rigid non-sortal types that capture
essential properties of individuals that
instantiate different kinds

• They usually represent the most abstract
layer of an ontology

• They generalize sortal types

• They do not have direct instances

CATEGORIES
gufo:Category

:Car

gufo:Kind

rdfs:subClassOf

:Tree

:Physical
Object

rdfs:subClassOf

rdf:type rdf:type
rdf:type

rdf:type

:Person

:Rational
Agent

rdf:type

rdfs:subClassOf

• A type T is relationally dependent on a type P by means of a relation R

∀x T(x) → ∃y. P(y) ∧ R(x,y)

• This type of dependency is known as generic dependency

• Examples:

• Student depends on School

• Author depends on Book

• Father depends on Offspring

RELATIONAL DEPENDENCY

• Anti-rigid relationally dependent sortal types

ROLES

:School:Student :studiesAt

gufo:Role gufo:Kind

rdf:type

rdfs:domain rdfs:range

rdf:type

:Spouse

rdf:type

:isMarriedTo

rdfs:domain

rdfs:range

Roles must specialize an ultimate sortal (e.g.),
from which they inherit their identity criteria

The relational dependence is
represented by the mandatory relation

A person plays the role of student when she studies at a school.

:Person

:Student

gufo:Role

gufo:Kind

rdf:type

rdf:type

:studiesAt some :School

rdfs:subClassOf

rdfs:subClassOf

How do we model the customer role if it is playable by both people and organizations?

:Customer

:Person :Organization

rdfs:subClassOf rdfs:subClassOf

gufo:Kind

rdf:typerdf:type

:Customer

:Person :Organization

rdfs:subClassOf rdfs:subClassOf

gufo:Kind

rdf:typerdf:type

We should use the RoleMixin Pattern!
(also known as role with disjoint allowed types)

:Customer

:Person :Organization

rdfs:subClassOf rdfs:subClassOf

gufo:Kind

rdf:typerdf:type

:Private
Customer

:Corporate
Customer

rdfs:subClassOf

gufo:RoleMixin

rdf:type

gufo:Role

rdf:type

Alternative version

:Agent :Customer
rdfs:subClassOf

gufo:RoleMixin

rdf:type

:Person :Organization

rdfs:subClassOf

gufo:Category

rdf:type

gufo:Kind

rdf:type

• An anti-rigid relationally dependent non-sortal type

• Examples:
• Customer and buyer are roles playable by people and organizations
• Trustee is a role playable by people or objects

ROLEMIXINS

gufo:RoleMixin

:Customer

rdf:type

:Buyer :Trustee :ValueObject

rdf:type
rdf:type

• Anti-rigid sortal types whose instantiation are characterized
by changes in intrinsic properties of their instances

• Phases always come in partitions (disjoint and complete)

• Examples:
• Child, Adult, and Elder are phases of a Person
• Functioning and Broken are phases of a Car

PHASES

:Person

:Healthy

gufo:Phase

gufo:Kind

rdf:type

rdfs:subClassOf

:Sick

rdfs:subClassOf

rdf:typerdf:type

owl:disjointWith

• Anti-rigid non-sortal types whose instantiation are
characterized by changes in intrinsic properties of its
instances

• Simply put, a non-sortal phase

PHASEMIXINS

:Animal

:Living

gufo:PhaseMixin

gufo:Category

rdf:type

rdfs:subClassOf

:Deceased

rdfs:subClassOf

rdf:typerdf:type

owl:disjointWith

• Semi-rigid non-sortal types

• Capture properties that are essential to some
individuals and accidental to others

• Can be specialized by anti-rigid and rigid types

MIXINS

:Crate

:Solid
Create

gufo:Phase

gufo:Kind

rdf:type

rdfs:subClassOf

:Damaged
Create

rdf:typerdf:type

:Seatable

gufo:Mixin

rdf:type

:Chair

rdfs:subClassOf

rdf:type

rdfs:subClassOf

CHANGE AND HISTORY06

HISTORICAL DATA

• By default, there is no support for representing change in the Semantic Web

• Then, what do we do when:
• a person loses/gains weight?
• a rental car is under repair?
• a band changes members?
• a student graduates?
• a president leaves office?

CHANGING RELATIONSHIPS

• Change in relationships represented via its truthmakers are natively
supported via their begin and end point properties

:Person

:John

rdf:type

:Employment

:John’s
Employment

rdf:type

:Organization

:UTwente

rdf:type

gufo:mediates gufo:mediates

“2017-01-01”^^xsd:date

gufo:hasBeginPointInXSDDate

“2019-08-05”^^xsd:date

gufo:hasEndPointInXSDDate

§ Endurant
§ Aspect

§ IntrinsicAspect
§ Quality
§ IntrinsicMode

§ ExtrinsicAspect
§ Relator
§ ExtrinsicMode

§ Situation
§ QualityValueAttributionSituation
§ TemporaryConstitutionSituation
§ TemporaryInstantiationSituation
§ TemporaryParthoodSituation
§ TemporaryRelationshipSituation

:Person

:John

rdf:type

:Employment

:John’s
Employment @ UT

rdf:type

:Organization

:UTwente

rdf:type

gufo:mediates gufo:mediates

“2017-01-01”^^xsd:date

gufo:hasBeginPointInXSDDate

“2019-08-05”^^xsd:date

gufo:hasEndPointInXSDDate

:John’s Employment
@ UNIBZ

gufo:mediates

:UTwente
gufo:mediates

rdf:type

“2019-08-06”^^xsd:date

gufo:hasBeginPointInXSDDate

John’s current employement

John’s past
employement

OTHER CHANGES

• Changes regarding:
• Instantiation (John became a professor)
• Quality value attribution (John’s salary changed)
• Part-whole relations (John switched his car tires)
• Temporary relations (John no longer is friends with Paul)

• Are all captured via specific subclasses of gufo:Situation
• A gufo:ConcreteIndividual that is a particular configuration of a

part of reality which can be understood as a whole and in which
entities stand in relations.

• A situation may be counterfactual or actual. An actual situation (or
in other words, a "fact") "obtains" in a certain time instant or during
a time interval.

§ Endurant
§ Aspect

§ IntrinsicAspect
§ Quality
§ IntrinsicMode

§ ExtrinsicAspect
§ Relator
§ ExtrinsicMode

§ Situation
§ QualityValueAttributionSituation
§ TemporaryConstitutionSituation
§ TemporaryInstantiationSituation
§ TemporaryParthoodSituation
§ TemporaryRelationshipSituation

:Person

:John

rdf:type

:Employment

:John’s
Employment

rdf:type

:Organization

:UTwente

rdf:type

gufo:mediates gufo:mediates

“2017-01-01”^^xsd:date

gufo:hasBeginPointInXSDDate

“2017-12-31”^^xsd:date

gufo:hasEndPointInXSDDate

:John’s Salary
in 2017

gufo:standsInQualityValueAttributionSituation gufo:QualityValue
AttributionSituationrdf:type

“1000”^^xsd:double

:concernsSalaryValueInEur
(sub gufo:concernsQualityValue)

Temporary quality value attribution

:Person

:John

rdf:type

:Footballer

rdfs:subClassOf

“2000-03-15”^^xsd:date

gufo:hasBeginPointInXSDDate gufo:hasEndPointInXSDDate

:JohnIsA
Footballer

gufo:standsInQualityInstantiationSituation

gufo:Temporary
InstantiationSituationrdf:typegufo:concernsNonRigidType

Temporary instantiation situation

“2021-10-22”^^xsd:date

CONCLUSION07

• We need all the help we can get!
• Rules
• Reuse
• Foundational patterns
• Automation of quality control

• We brought the benefits that were only available to OntoUML users to Semantic Web implementers

• Better integration between the taxonomy of types and taxonomy of individuals than in OntoUML
(due to limitations of UML)

CONCLUSIONS

• OWL 2 DL fragment employed

• But less expressive fragments possible
• Application-dependent choices on what restrictions to leave out
• E.g., punning can be ignored or replaced by annotation properties

• Rules that cannot be expressed in OWL are implemented in the plugin
• But can be expressed as shape constraints: SHACL

HOW ABOUT EXPRESSIVENESS

• OntoUML to gUFO-based OWL transformation
• incorporated in OntoUML Visual Paradigm plugin

• Using OntoUML as a starting point gives access to simulation, antipattern detection

• gUFO-based Ontology-Based Data Access (OBDA)
• high-level access to relational data

HOW DOES GUFO FIT IN THE OVERALL UFO/ONTOUML
ECOSYSTEM?

• We want to port the engineering tools we developed for OntoUML into gUFO
• Pattern-based development in the Protégé plugin
• Anti-pattern detection
• Simulation

• Reverse engineering OWL ontologies to OntoUML

• gUFO-based implementations of UFO-based reference ontologies:
• gUFO-C: Intentional and Social Layer
• gUFO-L: Core Ontology of Legal Aspects
• gUFO-S: Core Ontology of Services

ONGOING AND FUTURE WORK

IMPLEMENTING BETTER
ONTOLOGIES WITH GUFO

TIAGO PRINCE SALES
T.PRINCESALES@UTWENTE.NL

.

mailto:t.princesales@utwente.nl

