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Abstract. Ontology engineering is error-prone, and many published ontologies 
suffer from quality problems. This paper initiates a discussion about how 

axiomatically rich foundational ontologies can contribute to prevent and to detect 

bad ontology design. Examples T-boxes are presented, and it is demonstrated how 
typical design errors can be detected by upper-level axioms, in particular disjoint 

class axioms, existential and value restrictions. However, debugging large domain 

ontologies under an expressive top level raises scalability issues. During domain 
ontology design this can be mitigated by using small random ontology modules for 

debugging. For reasoning in applications, however, less expressive variants of such 

foundational ontologies are necessary.   
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1. Introduction 

Constructing domain ontologies is a demanding endeavour. The formalization of basic 

regularities of a domain requires not only familiarity with the domain but also 

understanding of the basic principles of logic and formal ontology. This is especially the 

case if ontology engineering is understood not as building (closed-world) models limited 

to the support of well-delineated reasoning use cases in restricted domains, but as 

providing interoperable and re-usable (open world) representations of the domain itself.  

This is a basic principle stressed not only by the defenders of so-called realist 

ontologies [1,2] but also by some (moderate) critics [3], which documents an increasing 

consensus on how to represent those areas of knowledge where people tend to agree on 

an observer-independent reality and benefit from standardised terms, such as in natural 

science and technology domains. An important tenet of these ontologies is collaborative 

ontology development and interoperability. Principles for this kind of ontology 

development have been formulated by the OBO Foundry consortium [4] and within the 

Good Ontology Design (GoodOD) guidelines [5]. Both propagate a concise foundational 

upper-level as a mainstay for interoperability, and there is also some evidence that 

foundational ontologies – domain-independent top-level or domain-related upper-level 

ontologies – speed up ontology development and improve quality [6].   
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This paper is intended to initiate a discussion on how foundational ontologies can 

help prevent typical errors in domain ontologies. This is also the reason why prototypical, 

partly made-up but easily understandable examples are used.  

2. Materials and Methods 

The work is based on BioTopLite (BTL2), an upper-level ontology [7], linked to BFO 

[8], using description logics [9] with OWL-DL expressiveness [10]. BTL2 has been 

designed with the intent to provide a rich set of constraining axioms to enforce the 

consistency of ontologies modelled thereunder. Although BTL2 is, in principle, domain-

independent, its content is geared to the domains of health care and biomedical research. 

This explains, e.g., the provision of more fine-grained classes for chemical and biological 

entities (e.g. ‘mono molecular entity’, organism, cell, population) as well as the 

disjunctive class condition, created in order to deal with the ontological heterogeneity of 

key medical concepts like diseases, signs, and symptoms. Fig. 1 provides Protégé 

screenshots of the class and relation hierarchies, together with sample axioms.     

 

Figure 1. Classes, relations (object properties) and selected axioms in BioTopLite2 (BTL2)[7] 

In order to test and demonstrate how BTL2 axioms are useful for preventing 

ontology design errors, T-boxes with typical examples of bad modelling will be 

presented in order to challenge the underlying foundational ontology. Some of these 

examples are formulated very abstractly due to their high level of generality; others use 

terms from a specific domain but are still understandable for a broader public.  

BTL2 Classes BTL2 Relations        BTL Axioms (examples)



  

Each T-box is modelled as an extension of BTL2. The HermIT [11] reasoner was 

used to detect inconsistencies. The explanation of inconsistencies follows Protégé’s 

OWL entailment explanation feature [12]. The examples are provided together with their 

results in the following section. The presentation of the original OWL expressions, the 

entailments and their justifications is done in the following order: 

 SRC – Axioms from ontology source (known satisfiable). 

 CHA – New axioms added that challenge the satisfiability of SRC. Cases 

in which an axiom is only transiently added, are marked by CHA-T. 

 INF – Inference, in particular the detection of classes that are unsatisfiable 

w.r.t. the T-box constituted by SRC and CHA.  

 EXP – Explanations of INF, with axioms collected from the explanation 

plug-in [12]. 

3. Results 

Reasoning examples under BTL2 are presented, in which deliberately erroneous axioms 

lead to an incoherent ontology, i.e., where one or more named classes turn out to be 

unsatisfiable, i.e. necessarily empty w.r.t. the T-box. This is expected to be detected by 

a DL classifier. In the following, a distinction is made between five error types, viz. (1) 

simple category errors, (2) value restrictions and transitive role errors, (3) complex 

domain/range constraint errors, (4) physical granularity errors, and (5) errors regarding 

unrealized realisables and non-referring information entities.  

3.1. Simple category errors 

A category error occurs whenever a class is a taxonomic descendent of upper-level 

classes that are modelled as mutually exclusive (Disjoint Classes in OWL). Such errors 

typically occur when ontology mapping and alignment is guided by lexical criteria. For 

instance, when mapping content of the clinical ontology SNOMED CT [13] (namespace 

sct:) to the foundational ontology BTL2 (namespace btl2:) one might be tempted to 

equate sct:Process with btl2:process and place ‘sct: Qualifier Value (qualifier value)’ 

under ‘btl2:quality’: 

 

SRC ‘sct:Process (qualifier value)’  SubClassOf  

                                                   ‘sct:Qualifier Value (qualifier value)’ 

(1a) 

NEW  ‘sct:Qualifier Value (qualifier value)’ SubClassOf btl2:quality (1b) 

NEW ‘sct:Process (qualifier value)’ EquivalentTo btl2:process (1c) 

INF ‘sct:Process (qualifier value)’  EquivalentTo owl:Nothing (1d) 

EXP btl2:quality DisjointWith btl2:process (1e) 

 

The origin of such category errors may be manifold. A common cause is misleading 

class labelling. Ontology labels should be context-independent and self-explanatory, and 

they should avoid ambiguous terms [14]. A more severe problem – like here – arises 

where the ontologies to be aligned fundamentally differ in upper level assumptions. In 

SNOMED CT, e.g., the subhierarchy ‘sct:Qualifier Value (qualifier value)’ is currently 



  

a badly organized reservoir for the most diverse terms, and the reason why hierarchies 

of pathological and physiological processes are placed therein remains unclear2.   

3.2. Value restrictions and transitive roles 

Value restrictions (universal constraints expressed by “only” in OWL Manchester 

syntax) restrict the range of allowed role fillers. It is tempting to use value restrictions 

together with mereological statements, e.g. stating that all members of a class have only 

parts of a certain kind, like in the following example:  

 

SRC btl2:cell SubClassOf btl2:compound (2a) 

SRC ‘cell culture’ SubClassOf ‘btl2:material object’ (2b) 

CHA ‘cell culture’ SubClassOf and (‘btl2:has part’ some btl2:cell)  

                                            and (‘btl2:has part’ only btl2:cell)  

(2c) 

INF ‘cell culture’ EquivalentTo owl:Nothing (2d) 

EXP ‘btl2:material object’ SubClassOf ‘btl2:has part’ some               

                                                        ‘btl2:subatomic particle’ 

(2e) 

EXP btl2:compound DisjointWith ‘btl2:subatomic particle’ (2f) 

 

Axiom like (2c) may fulfil their purpose in domain ontologies in which cells are the 

smallest objects, but as soon as smaller objects are allowed, the expression is inadequate 

– assuming 'has part' being transitive. BTL2 obviates such a granularity restriction by 

stating that all material objects have subatomic particles as (transitive) parts.    

3.3. Complex domain / range restrictions 

Domain / range restrictions are a suitable means to avoid ontology errors. However, in 

ontologies that use a small number of object properties like BTL2, this resource may be 

not expressive enough. For instance, if the relations ‘btl2:is part of’ and ‘btl2:has part’ 

are valid for material objects, immaterial objects, as well as for processes and information 

objects, formulating just domain / range restrictions at the level of these relations would 

still be compatible with an (unintended) model in which an object is part of a process or 

vice versa. This is why BTL2 encodes these restrictions using axioms like the one in (3f).  

 

SRC Object_A SubClassOf ‘btl2:material object’ (3a) 

SRC Process_A SubClassOf btl2:process (3b) 

CHA Object_A SubClassOf ‘btl2:is part of’ some Process_A (3c) 

INF Object_A EquivalentTo owl:Nothing (3d) 

EXP ‘btl2:has part’ InverseOf ‘btl2:is part of’ (3e) 

EXP btl2:process SubClassOf ‘btl2:has part’ only btl2:process        (3f) 

EXP btl2:process DisjointWith ‘btl2:material object’ (3g) 
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a classic case of use-mention confusion, which still haunts many domain ontologies [15], especially those 

deriving from frames, thesauri and other knowledge organization systems. 



  

A similar example is typical for medical ontologies, where domain experts are 

tempted to use “diagnosis” and “disease” interchangeably, and where signs and 

symptoms are referred to, in colloquial discourse, as being “parts” of diagnoses: 

 

SRC Diagnosis_A SubClassOf Diagnosis (3h) 

SRC Diagnosis SubClassOf ‘btl2:information object’ (3i) 

SRC Symptom_A SubClassOf Symptom (3j) 

SRC Symptom SubClassOf btl2:condition (3k) 

CHA Diagnosis_A SubClassOf ‘btl2:has part’ some Symptom_A (3l) 

INF Diagnosis_A EquivalentTo owl:Nothing (3m) 

EXP ‘btl2:information object’ SubClassOf  

                                    ‘btl2:has part’ only ‘btl2:information object’ 

(3n) 

EXP btl2:condition EquivalentTo btl2:function or btl2:disposition or   

                                             ‘btl2:material object’ or btl2:process 

(3o) 

EXP DisjointClasses: ‘btl2:material object’, btl2:process, btl2:function or 

btl2:disposition, ‘btl2:information object’, ‘btl2:immaterial object’, 

btl2:role, btl2:quality, ‘btl2:temporal region’, ‘btl2:value region’ 

(3p) 

3.4. Physical granularity 

Ontologies for natural sciences and technology deal largely with physical objects of 

several degrees of granularity. Levels of material granularity obey certain mereological 

constraints, e.g. that biological cells can be parts of organisms but not vice versa, or that 

polymolecular entities can never be part of single molecules. BTL2 incorporates such 

constraints. They help detect modelling errors like the following one. 

 

SRC Chromosome SubClassOf ‘btl2:poly molecular composite entity’ (4a) 

SRC ProteinMolecule SubClassOf ‘btl2:mono molecular entity’ (4b) 

CHA Chromosome SubClassOf ‘btl2:is part of’ some ProteinMolecule (4c) 

INF Chromosome EquivalentTo owl:Nothing (4d) 

EXP ‘btl2:poly molecular composite entity’ and  (‘btl2:is part of’ some  

              (btl2:atom or ‘btl2:mono molecular entity’ or   

              ‘btl2:subatomic particle’)) SubClassOf owl:Nothing 

(4e) 

3.5. Unrealised realisables and non-referring information entities 

Realisable entities like functions and dispositions [16] depend on material entities and 

are realised in processes. However, the existence of realisables does not imply their 

realisation: The function of a screwdriver is to drive screws, and the disposition of a glass 

is to break under certain circumstances, but as there are screwdrivers that are never used 

and glasses that are never thrown to the floor. Because for all types of functions and 

dispositions there are instances that have never been realised, ontologies have to deal 

with unrealised realisables, which could be, e.g., expressed by (5a).  

 

SRC Unrealized_Function EquivalentTo btl2:function and not  

                                 (‘btl2:has realization’ some owl:thing) 

(5a) 

 



  

In order not to preclude the possibility that dispositions and functions happen to be 

never realised, ontologies under BTL2 should define them using the value restriction 

constructor: 

SRC btl2:function SubClassOf  ‘btl2:has realization’ only  btl2:process (5b) 

SRC Function_A EquivalentTo btl2:function and  

                                           (‘btl2:has realization’ only  Process_A) 

(5c) 

 

Nevertheless, BTL2 does not reject a definition using an existential quantifier like in the 

following definition: 

 

CHA Function_A EquivalentTo btl2:function and  

                                            (‘btl2:has realization’ some Process_A) 

(5d) 

 

Function_A would then exclude all unrealised function instances. Such a class (which 

might be considered anti-rigid [17] if assuming that realisable entities are always 

unrealised when they come into existence) is most likely not intended by the modeller. 

The detection of these errors requires checking consistency after transiently adding 

axiom (5e). 

 

CHA-T btl2:function EquivalentTo Unrealized_Function (5e) 

INF btl2:function EquivalentTo owl:Nothing (5f) 

 

The explanation is given by the conjunction of axioms (5a), (5d), and (5e).  

The axiomatization of non-referring information entities follows the same pattern. 

Information entities can be referring and non-referring [18]. A typical example is medical 

diagnosis [19]. BTL2 here uses the relation represents. This relation connects 

information entities with domain entity they correctly characterise. This allows to 

distinguish wrong diagnoses from correct diagnoses.     

 

SRC Diagnosis SubClassOf  ‘btl2:information object (5g) 

SRC False_diagnosis SubClassOf Diagnosis and  

                                   (not btl2:represents some btl2:condition) 

(5h) 

SRC Cancer_Diagnosis EquivalentTo Diagnosis and btl2:represents  

                                                   only (Cancer or not btl2:condition) 

(5i) 

CHA Cancer_diagnosis EquivalentTo Diagnosis and btl2:represents                        

                                                    some Cancer 

(5j) 

  

Challenged by the axiom (5k) the T-box becomes incoherent. 

 

CHA-T Diagnosis EquivalentTo False_Diagnosis   (5k) 

INF Cancer_Diagnosis EquivalentTo owl:Nothing  

The explanation is given by the conjunction of axioms (5h), (5i), and (5k).   



  

4. Discussion and Further Work 

It was shown how a highly axiomatised foundational ontology like BioTopLite (BTL2) 

can incorporate constraints that reject bad modelling decisions that lead to unsatisfiable 

classes. A distinction was made between those cases in which the upper level axioms 

suffice for detecting such inconsistencies and those in which additional “challenges”, i.e. 

transiently added axioms are necessary.  

Most of the former cases capitalise on disjoint class axioms present in the upper 

level ontology. This comes near to the so-called logical anti-patterns introduced by [20], 

all of which require disjoint class axioms in order to detect inconsistencies. In contrast 

to the work presented, anti-patterns are very abstract logical expressions and independent 

of foundational ontologies. OntoClean [17] was presented as a methodology for detecting 

improper subclass axioms based on philosophically inspired, domain-independent 

properties of classes, the metaproperties unity, identity and rigidity. Although DL 

reasoners do not support meta-level reasoning, it has to be investigated whether certain 

elements from OntoClean could also included in DL-based foundational ontologies, e.g. 

by reifying them in terms of additional top-level classes3.     

Several limitations of this work have to be highlighted:  

 The typology presented is certainly non-exhaustive. It is primarily motivated by 

the author’s experience and not yet by the relevance of those types of problems 

in ontologies employed in real-world applications. It could further be related to 

existing work in ontology evaluation, e.g., the OQuaRE framework [21]. 

 The proposed approach will probably fail if application ontologies bypass the 

partition of upper categories of the foundational ontology or introduce new 

object properties that are not subproperties of the existing ones. The BTL2 

authors claim that their inventory of object properties is close to sufficient and 

recommend to introduce predicates required by the domain (e.g., in the 

biomedical domain: treats, prevents, diagnoses, interacts, binds) not as object 

properties but as subclasses of btl2:process.  

 Important causes of bad ontology design cannot be prevented or remedied by a 

foundational ontology. This includes erroneous representation of individuals as 

classes or vice versa (a typical error would be an A-Box OWL expression like 

“SodiumAtom Type btl2:atom), bad naming and insufficient documentation, as 

well as constraints on a meta-class level like in OntoClean.  

 Constraining axioms similar to the proposed ones can be added to domain 

ontologies, e.g. to assure mereotopological non-overlapping [22].  

 Although BTL2 was used as a testbed, the proposed approach would lend itself 

to other ontologies as well. Especially BFO would benefit from a stronger 

axiomatization, as the most popular version, which is the umbrella of most OBO 

ontologies lacks axioms beyond subclass and disjoint class axioms. This 

deficiency has been addressed by the 2.0 version, which is, however, not fully 

available in OWL due to its use of ternary relations. 

 The fact that BTL2 uses the whole range of constructors allowed by OWL-DL 

has a negative impact on reasoning performance. This makes debugging of large 

ontologies intractable. This was the case when aligning SNOMED CT with 

BTL2 [23]. The solution was to use small modules created from random 
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signatures as described in [24]. As a solution a two-step approach was proposed: 

(i) at design time using the rich foundational ontology for debugging random 

modules of a (large) domain ontology under construction, and (ii) at runtime 

placing the final domain ontology under a light version of the same foundational 

ontology for enabling efficient reasoning.  
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